Veritas™ Volume Manager Administrator's Guide
- Understanding Veritas Volume Manager
- VxVM and the operating system
- How VxVM handles storage management
- Volume layouts in VxVM
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- Provisioning new usable storage
- Administering disks
- Disk devices
- Discovering and configuring newly added disk devices
- Discovering disks and dynamically adding disk arrays
- How to administer the Device Discovery Layer
- Changing the disk-naming scheme
- Adding a disk to VxVM
- Rootability
- Displaying disk information
- Removing disks
- Removing and replacing disks
- Administering Dynamic Multi-Pathing
- How DMP works
- Administering DMP using vxdmpadm
- Gathering and displaying I/O statistics
- Specifying the I/O policy
- Online dynamic reconfiguration
- Reconfiguring a LUN online that is under DMP control
- Creating and administering disk groups
- About disk groups
- Displaying disk group information
- Creating a disk group
- Importing a disk group
- Moving disk groups between systems
- Handling cloned disks with duplicated identifiers
- Handling conflicting configuration copies
- Reorganizing the contents of disk groups
- Destroying a disk group
- Creating and administering subdisks and plexes
- Displaying plex information
- Reattaching plexes
- Creating volumes
- Types of volume layouts
- Creating a volume
- Using vxassist
- Creating a volume on specific disks
- Creating a mirrored volume
- Creating a striped volume
- Creating a volume using vxmake
- Initializing and starting a volume
- Using rules and persistent attributes to make volume allocation more efficient
- Administering volumes
- Displaying volume information
- Monitoring and controlling tasks
- Reclamation of storage on thin reclamation arrays
- Stopping a volume
- Resizing a volume
- Adding a mirror to a volume
- Preparing a volume for DRL and instant snapshots
- Adding traditional DRL logging to a mirrored volume
- Enabling FastResync on a volume
- Performing online relayout
- Adding a RAID-5 log
- Creating and administering volume sets
- Configuring off-host processing
- Administering hot-relocation
- How hot-relocation works
- Moving relocated subdisks
- Administering cluster functionality (CVM)
- Overview of clustering
- Multiple host failover configurations
- CVM initialization and configuration
- Dirty region logging in cluster environments
- Administering VxVM in cluster environments
- Changing the CVM master manually
- Importing disk groups as shared
- Administering sites and remote mirrors
- About sites and remote mirrors
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Failure and recovery scenarios
- Performance monitoring and tuning
- Appendix A. Using Veritas Volume Manager commands
- Appendix B. Configuring Veritas Volume Manager
How persistent FastResync works with snapshots
Persistent FastResync uses a map in a DCO volume on disk to implement change tracking. As for non-persistent FastResync, each bit in the map represents a contiguous number of blocks in a volume's address space.
Figure: Mirrored volume with persistent FastResync enabled shows an example of a mirrored volume with two plexes on which Persistent FastResync is enabled.
Associated with the volume are a DCO object and a DCO volume with two plexes.
To create a traditional third-mirror snapshot or an instant (copy-on-write) snapshot, the vxassist snapstart or vxsnap make operation respectively is performed on the volume.
Figure: Mirrored volume after completion of a snapstart operation shows how a snapshot plex is set up in the volume, and how a disabled DCO plex is associated with it.
Multiple snapshot plexes and associated DCO plexes may be created in the volume by re-running the vxassist snapstart command for traditional snapshots, or the vxsnap make command for space-optimized snapshots. You can create up to a total of 32 plexes (data and log) in a volume.
Space-optimized instant snapshots do not require additional full-sized plexes to be created. Instead, they use a storage cache that typically requires only 10% of the storage that is required by full-sized snapshots. There is a trade-off in functionality in using space-optimized snapshots. The storage cache is formed within a cache volume, and this volume is associated with a cache object. For convenience of operation, this cache can be shared by all the space-optimized instant snapshots within a disk group.
A traditional snapshot volume is created from a snapshot plex by running the vxassist snapshot operation on the volume. For instant snapshots, however, the vxsnap make command makes an instant snapshot volume immediately available for use. There is no need to run an additional command.
Figure: Mirrored volume and snapshot volume after completion of a snapshot operation shows how the creation of the snapshot volume also sets up a DCO object and a DCO volume for the snapshot volume.
The DCO volume contains the single DCO plex that was associated with the snapshot plex. If two snapshot plexes were taken to form the snapshot volume, the DCO volume would contain two plexes. For space-optimized instant snapshots, the DCO object and DCO volume are associated with a snapshot volume that is created on a cache object and not on a VM disk.
Associated with both the original volume and the snapshot volume are snap objects. The snap object for the original volume points to the snapshot volume, and the snap object for the snapshot volume points to the original volume. This allows VxVM to track the relationship between volumes and their snapshots even if they are moved into different disk groups.
The snap objects in the original volume and snapshot volume are automatically deleted in the following circumstances:
For traditional snapshots, the vxassist snapback operation is run to return all of the plexes of the snapshot volume to the original volume.
For traditional snapshots, the vxassist snapclear operation is run on a volume to break the association between the original volume and the snapshot volume. If the volumes are in different disk groups, the command must be run separately on each volume.
For full-sized instant snapshots, the vxsnap reattach operation is run to return all of the plexes of the snapshot volume to the original volume.
For full-sized instant snapshots, the vxsnap dis or vxsnap split operations are run on a volume to break the association between the original volume and the snapshot volume. If the volumes are in different disk groups, the command must be run separately on each volume.
Note:
The vxsnap reattach, dis and split operations are not supported for space-optimized instant snapshots.
For details about the snapshots and how to use them, see the Veritas Storage Foundation Advanced Features Administrator's Guide.
See the vxassist(1M) manual page.
See the vxsnap(1M) manual page.
More Information