Veritas™ Volume Manager Administrator's Guide
- Understanding Veritas Volume Manager
- VxVM and the operating system
- How VxVM handles storage management
- Volume layouts in VxVM
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- Provisioning new usable storage
- Administering disks
- Disk devices
- Discovering and configuring newly added disk devices
- Discovering disks and dynamically adding disk arrays
- How to administer the Device Discovery Layer
- Changing the disk-naming scheme
- Adding a disk to VxVM
- Rootability
- Displaying disk information
- Removing disks
- Removing and replacing disks
- Administering Dynamic Multi-Pathing
- How DMP works
- Administering DMP using vxdmpadm
- Gathering and displaying I/O statistics
- Specifying the I/O policy
- Online dynamic reconfiguration
- Reconfiguring a LUN online that is under DMP control
- Creating and administering disk groups
- About disk groups
- Displaying disk group information
- Creating a disk group
- Importing a disk group
- Moving disk groups between systems
- Handling cloned disks with duplicated identifiers
- Handling conflicting configuration copies
- Reorganizing the contents of disk groups
- Destroying a disk group
- Creating and administering subdisks and plexes
- Displaying plex information
- Reattaching plexes
- Creating volumes
- Types of volume layouts
- Creating a volume
- Using vxassist
- Creating a volume on specific disks
- Creating a mirrored volume
- Creating a striped volume
- Creating a volume using vxmake
- Initializing and starting a volume
- Using rules and persistent attributes to make volume allocation more efficient
- Administering volumes
- Displaying volume information
- Monitoring and controlling tasks
- Reclamation of storage on thin reclamation arrays
- Stopping a volume
- Resizing a volume
- Adding a mirror to a volume
- Preparing a volume for DRL and instant snapshots
- Adding traditional DRL logging to a mirrored volume
- Enabling FastResync on a volume
- Performing online relayout
- Adding a RAID-5 log
- Creating and administering volume sets
- Configuring off-host processing
- Administering hot-relocation
- How hot-relocation works
- Moving relocated subdisks
- Administering cluster functionality (CVM)
- Overview of clustering
- Multiple host failover configurations
- CVM initialization and configuration
- Dirty region logging in cluster environments
- Administering VxVM in cluster environments
- Changing the CVM master manually
- Importing disk groups as shared
- Administering sites and remote mirrors
- About sites and remote mirrors
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Failure and recovery scenarios
- Performance monitoring and tuning
- Appendix A. Using Veritas Volume Manager commands
- Appendix B. Configuring Veritas Volume Manager
How DMP works
Note:
You need a full license to use this feature.
Veritas Dynamic Multi-Pathing (DMP) provides greater availability, reliability, and performance by using path failover and load balancing. This feature is available for multiported disk arrays from various vendors.
DMP coexists with the native multi-pathing in HP-UX.
See DMP coexistence with HP-UX native multi-pathing.
Multiported disk arrays can be connected to host systems through multiple paths. To detect the various paths to a disk, DMP uses a mechanism that is specific to each supported array. DMP can also differentiate between different enclosures of a supported array that are connected to the same host system.
The multi-pathing policy that is used by DMP depends on the characteristics of the disk array.
DMP supports the following standard array types:
For this release, only the A/A, A/A-A, and ALUA arrays are supported on HP-UX.
An array policy module (APM) may define array types to DMP in addition to the standard types for the arrays that it supports.
VxVM uses DMP metanodes (DMP nodes) to access disk devices connected to the system. For each disk in a supported array, DMP maps one node to the set of paths that are connected to the disk. Additionally, DMP associates the appropriate multi-pathing policy for the disk array with the node. For disks in an unsupported array, DMP maps a separate node to each path that is connected to a disk. The raw and block devices for the nodes are created in the directories /dev/vx/rdmp and /dev/vx/dmp respectively.
Figure: How DMP represents multiple physical paths to a disk as one node shows how DMP sets up a node for a disk in a supported disk array.
VxVM implements a disk device naming scheme that allows you to recognize to which array a disk belongs.
Figure: Example of multi-pathing for a disk enclosure in a SAN environment shows an example where two paths, c1t99d0 and c2t99d0, exist to a single disk in the enclosure, but VxVM uses the single DMP node, enc0_0, to access it.