Veritas™ Volume Manager Administrator's Guide
- Understanding Veritas Volume Manager
- VxVM and the operating system
- How VxVM handles storage management
- Volume layouts in VxVM
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- Provisioning new usable storage
- Administering disks
- Disk devices
- Discovering and configuring newly added disk devices
- Discovering disks and dynamically adding disk arrays
- How to administer the Device Discovery Layer
- Changing the disk-naming scheme
- Adding a disk to VxVM
- Rootability
- Displaying disk information
- Removing disks
- Removing and replacing disks
- Administering Dynamic Multi-Pathing
- How DMP works
- Administering DMP using vxdmpadm
- Gathering and displaying I/O statistics
- Specifying the I/O policy
- Online dynamic reconfiguration
- Reconfiguring a LUN online that is under DMP control
- Creating and administering disk groups
- About disk groups
- Displaying disk group information
- Creating a disk group
- Importing a disk group
- Moving disk groups between systems
- Handling cloned disks with duplicated identifiers
- Handling conflicting configuration copies
- Reorganizing the contents of disk groups
- Destroying a disk group
- Creating and administering subdisks and plexes
- Displaying plex information
- Reattaching plexes
- Creating volumes
- Types of volume layouts
- Creating a volume
- Using vxassist
- Creating a volume on specific disks
- Creating a mirrored volume
- Creating a striped volume
- Creating a volume using vxmake
- Initializing and starting a volume
- Using rules and persistent attributes to make volume allocation more efficient
- Administering volumes
- Displaying volume information
- Monitoring and controlling tasks
- Reclamation of storage on thin reclamation arrays
- Stopping a volume
- Resizing a volume
- Adding a mirror to a volume
- Preparing a volume for DRL and instant snapshots
- Adding traditional DRL logging to a mirrored volume
- Enabling FastResync on a volume
- Performing online relayout
- Adding a RAID-5 log
- Creating and administering volume sets
- Configuring off-host processing
- Administering hot-relocation
- How hot-relocation works
- Moving relocated subdisks
- Administering cluster functionality (CVM)
- Overview of clustering
- Multiple host failover configurations
- CVM initialization and configuration
- Dirty region logging in cluster environments
- Administering VxVM in cluster environments
- Changing the CVM master manually
- Importing disk groups as shared
- Administering sites and remote mirrors
- About sites and remote mirrors
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Failure and recovery scenarios
- Performance monitoring and tuning
- Appendix A. Using Veritas Volume Manager commands
- Appendix B. Configuring Veritas Volume Manager
Concatenation, spanning, and carving
Concatenation maps data in a linear manner onto one or more subdisks in a plex. To access all of the data in a concatenated plex sequentially, data is first accessed in the first subdisk from the beginning to the end. Data is then accessed in the remaining subdisks sequentially from the beginning to the end of each subdisk, until the end of the last subdisk.
The subdisks in a concatenated plex do not have to be physically contiguous and can belong to more than one VM disk. Concatenation using subdisks that reside on more than one VM disk is called spanning.
Figure: Example of concatenation shows the concatenation of two subdisks from the same VM disk.
If a single LUN or disk is split into multiple subdisks, and each subdisk belongs to a unique volume, it is called carving.
The blocks n, n+1, n+2 and n+3 (numbered relative to the start of the plex) are contiguous on the plex, but actually come from two distinct subdisks on the same physical disk.
The remaining free space in the subdisk, disk01-02, on VM disk, disk01, can be put to other uses.
You can use concatenation with multiple subdisks when there is insufficient contiguous space for the plex on any one disk. This form of concatenation can be used for load balancing between disks, and for head movement optimization on a particular disk.
Figure: Example of spanning shows data spread over two subdisks in a spanned plex.
The blocks n, n+1, n+2 and n+3 (numbered relative to the start of the plex) are contiguous on the plex, but actually come from two distinct subdisks from two distinct physical disks.
The remaining free space in the subdisk disk02-02 on VM disk disk02 can be put to other uses.
Warning:
Spanning a plex across multiple disks increases the chance that a disk failure results in failure of the assigned volume. Use mirroring or RAID-5 to reduce the risk that a single disk failure results in a volume failure.