Veritas™ Volume Manager Administrator's Guide
- Understanding Veritas Volume Manager
- About Veritas Volume Manager
- VxVM and the operating system
- How VxVM handles storage management
- Volume layouts in VxVM
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- Hot-relocation
- Volume sets
- Provisioning new usable storage
- Administering disks
- About disk management
- Disk devices
- Discovering and configuring newly added disk devices
- Partial device discovery
- Discovering disks and dynamically adding disk arrays
- Third-party driver coexistence
- How to administer the Device Discovery Layer
- Listing all the devices including iSCSI
- Listing all the Host Bus Adapters including iSCSI
- Listing the ports configured on a Host Bus Adapter
- Listing the targets configured from a Host Bus Adapter or a port
- Listing the devices configured from a Host Bus Adapter and target
- Getting or setting the iSCSI operational parameters
- Listing all supported disk arrays
- Excluding support for a disk array library
- Re-including support for an excluded disk array library
- Listing excluded disk arrays
- Listing supported disks in the DISKS category
- Displaying details about a supported array library
- Adding unsupported disk arrays to the DISKS category
- Removing disks from the DISKS category
- Foreign devices
- Disks under VxVM control
- Changing the disk-naming scheme
- About the Array Volume Identifier (AVID) attribute
- Discovering the association between enclosure-based disk names and OS-based disk names
- About disk installation and formatting
- Displaying or changing default disk layout attributes
- Adding a disk to VxVM
- RAM disk support in VxVM
- Veritas Volume Manager co-existence with Oracle Automatic Storage Management (ASM) disks
- Rootability
- Displaying disk information
- Controlling Powerfail Timeout
- Removing disks
- Removing a disk from VxVM control
- Removing and replacing disks
- Enabling a disk
- Taking a disk offline
- Renaming a disk
- Reserving disks
- Administering Dynamic Multi-Pathing
- How DMP works
- Disabling multi-pathing and making devices invisible to VxVM
- Enabling multi-pathing and making devices visible to VxVM
- About enabling and disabling I/O for controllers and storage processors
- About displaying DMP database information
- Displaying the paths to a disk
- Setting customized names for DMP nodes
- Administering DMP using vxdmpadm
- Retrieving information about a DMP node
- Displaying consolidated information about the DMP nodes
- Displaying the members of a LUN group
- Displaying paths controlled by a DMP node, controller, enclosure, or array port
- Displaying information about controllers
- Displaying information about enclosures
- Displaying information about array ports
- Displaying extended device attributes
- Suppressing or including devices for VxVM or DMP control
- Gathering and displaying I/O statistics
- Setting the attributes of the paths to an enclosure
- Displaying the redundancy level of a device or enclosure
- Specifying the minimum number of active paths
- Displaying the I/O policy
- Specifying the I/O policy
- Disabling I/O for paths, controllers or array ports
- Enabling I/O for paths, controllers or array ports
- Renaming an enclosure
- Configuring the response to I/O failures
- Configuring the I/O throttling mechanism
- Configuring Subpaths Failover Groups (SFG)
- Configuring Low Impact Path Probing
- Displaying recovery option values
- Configuring DMP path restoration policies
- Stopping the DMP path restoration thread
- Displaying the status of the DMP path restoration thread
- Displaying information about the DMP error-handling thread
- Configuring array policy modules
- Online dynamic reconfiguration
- About online dynamic reconfiguration
- Reconfiguring a LUN online that is under DMP control
- Removing LUNs dynamically from an existing target ID
- Adding new LUNs dynamically to a new target ID
- About detecting target ID reuse if the operating system device tree is not cleaned up
- Scanning an operating system device tree after adding or removing LUNs
- Cleaning up the operating system device tree after removing LUNs
- Upgrading the array controller firmware online
- Replacing a host bus adapter
- Creating and administering disk groups
- About disk groups
- Displaying disk group information
- Creating a disk group
- Adding a disk to a disk group
- Removing a disk from a disk group
- Moving disks between disk groups
- Deporting a disk group
- Importing a disk group
- Handling of minor number conflicts
- Moving disk groups between systems
- Handling cloned disks with duplicated identifiers
- Renaming a disk group
- Handling conflicting configuration copies
- Reorganizing the contents of disk groups
- Disabling a disk group
- Destroying a disk group
- Upgrading the disk group version
- About the configuration daemon in VxVM
- Backing up and restoring disk group configuration data
- Using vxnotify to monitor configuration changes
- Working with existing ISP disk groups
- Creating and administering subdisks and plexes
- About subdisks
- Creating subdisks
- Displaying subdisk information
- Moving subdisks
- Splitting subdisks
- Joining subdisks
- Associating subdisks with plexes
- Associating log subdisks
- Dissociating subdisks from plexes
- Removing subdisks
- Changing subdisk attributes
- About plexes
- Creating plexes
- Creating a striped plex
- Displaying plex information
- Attaching and associating plexes
- Taking plexes offline
- Detaching plexes
- Reattaching plexes
- Moving plexes
- Copying volumes to plexes
- Dissociating and removing plexes
- Changing plex attributes
- Creating volumes
- About volume creation
- Types of volume layouts
- Creating a volume
- Using vxassist
- Discovering the maximum size of a volume
- Disk group alignment constraints on volumes
- Creating a volume on any disk
- Creating a volume on specific disks
- Creating a mirrored volume
- Creating a volume with a version 0 DCO volume
- Creating a volume with a version 20 DCO volume
- Creating a volume with dirty region logging enabled
- Creating a striped volume
- Mirroring across targets, controllers or enclosures
- Mirroring across media types (SSD and HDD)
- Creating a RAID-5 volume
- Creating tagged volumes
- Creating a volume using vxmake
- Initializing and starting a volume
- Accessing a volume
- Using rules and persistent attributes to make volume allocation more efficient
- Administering volumes
- About volume administration
- Displaying volume information
- Monitoring and controlling tasks
- About SF Thin Reclamation feature
- Reclamation of storage on thin reclamation arrays
- Monitoring Thin Reclamation using the vxtask command
- Using SmartMove with Thin Provisioning
- Admin operations on an unmounted VxFS thin volume
- Stopping a volume
- Starting a volume
- Resizing a volume
- Adding a mirror to a volume
- Removing a mirror
- Adding logs and maps to volumes
- Preparing a volume for DRL and instant snapshots
- Specifying storage for version 20 DCO plexes
- Using a DCO and DCO volume with a RAID-5 volume
- Determining the DCO version number
- Determining if DRL is enabled on a volume
- Determining if DRL logging is active on a volume
- Disabling and re-enabling DRL
- Removing support for DRL and instant snapshots from a volume
- Adding traditional DRL logging to a mirrored volume
- Upgrading existing volumes to use version 20 DCOs
- Setting tags on volumes
- Changing the read policy for mirrored volumes
- Removing a volume
- Moving volumes from a VM disk
- Enabling FastResync on a volume
- Performing online relayout
- Converting between layered and non-layered volumes
- Adding a RAID-5 log
- Creating and administering volume sets
- Configuring off-host processing
- Administering hot-relocation
- About hot-relocation
- How hot-relocation works
- Configuring a system for hot-relocation
- Displaying spare disk information
- Marking a disk as a hot-relocation spare
- Removing a disk from use as a hot-relocation spare
- Excluding a disk from hot-relocation use
- Making a disk available for hot-relocation use
- Configuring hot-relocation to use only spare disks
- Moving relocated subdisks
- Modifying the behavior of hot-relocation
- Administering cluster functionality (CVM)
- Overview of clustering
- Multiple host failover configurations
- About the cluster functionality of VxVM
- CVM initialization and configuration
- Dirty region logging in cluster environments
- Administering VxVM in cluster environments
- Requesting node status and discovering the master node
- Changing the CVM master manually
- Determining if a LUN is in a shareable disk group
- Listing shared disk groups
- Creating a shared disk group
- Importing disk groups as shared
- Handling cloned disks in a shared disk group
- Converting a disk group from shared to private
- Moving objects between shared disk groups
- Splitting shared disk groups
- Joining shared disk groups
- Changing the activation mode on a shared disk group
- Setting the disk detach policy on a shared disk group
- Setting the disk group failure policy on a shared disk group
- Creating volumes with exclusive open access by a node
- Setting exclusive open access to a volume by a node
- Displaying the cluster protocol version
- Displaying the supported cluster protocol version range
- Recovering volumes in shared disk groups
- Obtaining cluster performance statistics
- Administering CVM from the slave node
- Administering sites and remote mirrors
- About sites and remote mirrors
- Making an existing disk group site consistent
- Configuring a new disk group as a Remote Mirror configuration
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Examples of storage allocation by specifying sites
- Displaying site information
- Failure and recovery scenarios
- Performance monitoring and tuning
- Appendix A. Using Veritas Volume Manager commands
- Appendix B. Configuring Veritas Volume Manager
- Glossary
Associating subdisks with plexes
Associating a subdisk with a plex places the amount of disk space defined by the subdisk at a specific offset within the plex. The entire area that the subdisk fills must not be occupied by any portion of another subdisk. There are several ways that subdisks can be associated with plexes, depending on the overall state of the configuration.
If you have already created all the subdisks needed for a particular plex, to associate subdisks at plex creation, use the following command:
# vxmake [-g diskgroup] plex plex sd=subdisk,...
For example, to create the plex home-1 and associate subdisks mydg02-01, mydg02-00, and mydg02-02 with plex home-1, all in the disk group, mydg, use the following command:
# vxmake -g mydg plex home-1 sd=mydg02-01,mydg02-00,mydg02-02
Subdisks are associated in order starting at offset 0. If you use this type of command, you do not have to specify the multiple commands needed to create the plex and then associate each of the subdisks with that plex. In this example, the subdisks are associated to the plex in the order they are listed (after sd=). The disk space defined as mydg02-01 is first, mydg02-00 is second, and mydg02-02 is third. This method of associating subdisks is convenient during initial configuration.
Subdisks can also be associated with a plex that already exists. To associate one or more subdisks with an existing plex, use the following command:
# vxsd [-g diskgroup] assoc plex subdisk1 [subdisk2 subdisk3 ...]
For example, to associate subdisks named mydg02-01, mydg02-00, and mydg02-02 with a plex named home-1, use the following command:
# vxsd -g mydg assoc home-1 mydg02-01 mydg02-00 mydg02-01
If the plex is not empty, the new subdisks are added after any subdisks that are already associated with the plex, unless the -l option is specified with the command. The -l option associates subdisks at a specific offset within the plex.
The -l option is required if you previously created a sparse plex (that is, a plex with portions of its address space that do not map to subdisks) for a particular volume, and subsequently want to make the plex complete. To complete the plex, create a subdisk of a size that fits the hole in the sparse plex exactly. Then, associate the subdisk with the plex by specifying the offset of the beginning of the hole in the plex, using the following command:
# vxsd [-g diskgroup] -l offset assoc sparse_plex exact_size_subdisk
For example, the following command would insert the subdisk, mydg15-01, in the plex, vol10-01, starting at an offset of 4096 blocks:
# vxsd -g mydg -l 4096b assoc vol10-01 mydg15-01
Note:
The subdisk must be exactly the right size. VxVM does not allow the space defined for two subdisks to overlap within a plex.
For striped or RAID-5 plexes, use the following command to specify a column number and column offset for the subdisk to be added:
# vxsd [-g diskgroup] -l column_#/offset assoc plex subdisk ...
If only one number is specified with the -l option for striped plexes, the number is interpreted as a column number and the subdisk is associated at the end of the column.
For example, the following command would add the subdisk, mydg11-01, to the end of column 1 of the plex, vol02-01:
# vxsd -g mydg -l 1 assoc vol02-01 mydg11-01
Alternatively, to add M subdisks at the end of each of the N columns in a striped or RAID-5 volume, you can use the following form of the vxsd command:
# vxsd [-g diskgroup] assoc plex subdisk1:0 ... subdiskM:N-1
The following example shows how to append three subdisk to the ends of the three columns in a striped plex, vol-01, in the disk group, mydg:
# vxsd -g mydg assoc vol01-01 mydg10-01:0 mydg11-01:1 mydg12-01:2
If a subdisk is filling a "hole" in the plex (that is, some portion of the volume logical address space is mapped by the subdisk), the subdisk is considered stale. If the volume is enabled, the association operation regenerates data that belongs on the subdisk. Otherwise, it is marked as stale and is recovered when the volume is started.