Veritas™ Volume Manager Administrator's Guide
- Understanding Veritas Volume Manager
- VxVM and the operating system
- How VxVM handles storage management
- Volume layouts in VxVM
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- Provisioning new usable storage
- Administering disks
- Disk devices
- Discovering and configuring newly added disk devices
- Discovering disks and dynamically adding disk arrays
- How to administer the Device Discovery Layer
- Changing the disk-naming scheme
- Adding a disk to VxVM
- Rootability
- Displaying disk information
- Removing disks
- Removing and replacing disks
- Administering Dynamic Multi-Pathing
- How DMP works
- Administering DMP using vxdmpadm
- Gathering and displaying I/O statistics
- Specifying the I/O policy
- Online dynamic reconfiguration
- Reconfiguring a LUN online that is under DMP control
- Creating and administering disk groups
- About disk groups
- Displaying disk group information
- Creating a disk group
- Importing a disk group
- Moving disk groups between systems
- Handling cloned disks with duplicated identifiers
- Handling conflicting configuration copies
- Reorganizing the contents of disk groups
- Destroying a disk group
- Creating and administering subdisks and plexes
- Displaying plex information
- Reattaching plexes
- Creating volumes
- Types of volume layouts
- Creating a volume
- Using vxassist
- Creating a volume on specific disks
- Creating a mirrored volume
- Creating a striped volume
- Creating a volume using vxmake
- Initializing and starting a volume
- Using rules and persistent attributes to make volume allocation more efficient
- Administering volumes
- Displaying volume information
- Monitoring and controlling tasks
- Reclamation of storage on thin reclamation arrays
- Stopping a volume
- Resizing a volume
- Adding a mirror to a volume
- Preparing a volume for DRL and instant snapshots
- Adding traditional DRL logging to a mirrored volume
- Enabling FastResync on a volume
- Performing online relayout
- Adding a RAID-5 log
- Creating and administering volume sets
- Configuring off-host processing
- Administering hot-relocation
- How hot-relocation works
- Moving relocated subdisks
- Administering cluster functionality (CVM)
- Overview of clustering
- Multiple host failover configurations
- CVM initialization and configuration
- Dirty region logging in cluster environments
- Administering VxVM in cluster environments
- Changing the CVM master manually
- Importing disk groups as shared
- Administering sites and remote mirrors
- About sites and remote mirrors
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Failure and recovery scenarios
- Performance monitoring and tuning
- Appendix A. Using Veritas Volume Manager commands
- Appendix B. Configuring Veritas Volume Manager
Implemention of off-host processing solutions
Figure: Example implementation of off-host processing shows an example implementation of off-host processing.
By accessing snapshot volumes from a lightly-loaded host (shown here as the off-host processing (OHP) host), CPU- and I/O-intensive operations for online backup and decision support do not degrade the performance of the primary host that is performing the main production activity (such as running a database). If you also place the snapshot volumes on disks that are attached to different host controllers than the disks in the primary volumes, it is possible to avoid contending with the primary host for I/O resources.
The following sections describe how you can apply off-host processing to implement regular online backup of a volume in a private disk group, and to set up a replica of a production database for decision support. The following applications are outlined:
These applications use the Persistent FastResync feature of VxVM in conjunction with linked break-off snapshots.
A volume snapshot represents the data that exists in a volume at a given time. As such, VxVM does not have any knowledge of data that is cached by the overlying file system, or by applications such as databases that have files open in the file system. If you set the fsgen volume usage type on a volume that contains a Veritas File System (VxFS), intent logging of the file system metadata ensures the internal consistency of the file system that is backed up. For other file system types, depending on the intent logging capabilities of the file system, there may be potential inconsistencies between in-memory data and the data in the snapshot image.
For databases, you must also use a suitable mechanism to ensure the integrity of tablespace data when the volume snapshot is taken. Most modern database software provides the facility to temporarily suspend file system I/O. For ordinary files in a file system, which may be open to a wide variety of different applications, there may be no way to ensure the complete integrity of the file data other than by shutting down the applications and temporarily unmounting the file system. In many cases, it may only be important to ensure the integrity of file data that is not in active use when you take the snapshot.