InfoScale™ 9.0 Replication Administrator's Guide - AIX
- Section I. Getting started with Volume Replicator
- Introducing Volume Replicator
- Understanding how Volume Replicator works
- How VVR uses kernel buffers for replication
- Replication in a shared disk group environment
- Using SmartTier with VVR
- Understanding the VVR snapshot feature
- About VVR compression
- Planning and configuring replication
- Before you begin configuring
- Choosing the mode of volume replication
- Planning the network
- Sizing the SRL
- Understanding replication settings for a Secondary
- Configuring VVR in a VCS environment
- Using the primary-elect feature to choose the primary site after a site disaster or network disruption
- Requirements for configuring VVR in a VCS environment
- Example setting up VVR in a VCS environment
- Configuring the agents for a bunker replication configuration
- Section II. Setting up and administering VVR
- Setting up replication
- Creating a Replicated Data Set
- Creating a Primary RVG of an RDS
- Adding a Secondary to an RDS
- Changing the replication settings for a Secondary
- Synchronizing the Secondary and starting replication
- Starting replication when the data volumes are zero initialized
- Displaying configuration information
- Displaying RVG and RDS information
- Displaying information about data volumes and volume sets
- Displaying information about Secondaries
- Displaying statistics with the vrstat display commands
- Collecting consolidated statistics of the VVR components
- Displaying network performance data
- Administering Volume Replicator
- Administering data volumes
- Associating a volume to a Replicated Data Set
- Associating a volume set to an RDS
- Associating a Data Change Map to a data volume as a log plex
- Resizing a data volume in a Replicated Data Set
- Administering the SRL
- Incrementally synchronizing the Secondary after SRL overflow
- Administering replication
- Administering the Replicated Data Set
- Administering Storage Checkpoints
- Creating RVG snapshots
- Using the instant snapshot feature
- About instant full snapshots
- Preparing the volumes prior to using the instant snapshot feature
- Creating instant full snapshots
- About instant space-optimized snapshots
- Creating instant space-optimized snapshots
- About instant plex-breakoff snapshots
- Administering snapshots
- Using the traditional snapshot feature
- Using Veritas Volume Manager FastResync
- Verifying the DR readiness of a VVR setup
- Backing up the Secondary
- Administering data volumes
- Using VVR for off-host processing
- Transferring the Primary role
- Migrating the Primary
- About taking over from an original Primary
- Failing back to the original Primary
- Choosing the Primary site after a site disaster or network disruption
- Troubleshooting the primary-elect feature
- Replication using a bunker site
- Introduction to replication using a bunker site
- Setting up replication using a bunker site
- Using a bunker for disaster recovery
- Replication using a bunker site in a VCS environment
- Configuring and administering VVR using System Management Interface Tool
- Accessing Volume Replicator interface in SMIT
- Setting up a simple Volume Replicator configuration using SMIT
- Displaying configuration information using SMIT
- Administering Volume Replicator using SMIT
- Taking instant snapshot of data volumes of an RVG using SMIT
- Associating a volume to a Replicated Data Set using SMIT
- Transferring the Primary role using SMIT
- Troubleshooting VVR
- Recovery from configuration errors
- Errors during an RLINK attach
- Errors during modification of an RVG
- Recovery on the Primary or Secondary
- Recovering from Primary data volume error
- Primary SRL volume error cleanup and restart
- Primary SRL header error cleanup and recovery
- Secondary data volume error cleanup and recovery
- Tuning replication performance
- SRL layout
- Tuning Volume Replicator
- VVR buffer space
- Tuning VVR compression
- VVR buffer space
- Setting up replication
- Section III. Analyzing your environment with Volume Replicator Advisor
- Introducing Volume Replicator Advisor (VRAdvisor)
- Collecting the sample of data
- About collecting the sample of data
- Collecting the sample of data on UNIX
- Collecting the sample of data on Windows
- Analyzing the sample of data
- About analyzing the sample of data
- Analyzing the collected data
- Understanding the results of the analysis
- Viewing the analysis results
- Recalculating the analysis results
- Installing Volume Replicator Advisor (VRAdvisor)
- Section IV. VVR reference
- Appendix A. VVR command reference
- Appendix B. Using the In-band Control Messaging utility vxibc and the IBC programming API
- Using the IBC messaging command-line utility
- Examples - Off-host processing
- In-band Control Messaging API
- Appendix C. Volume Replicator object states
- Appendix D. Alternate methods for synchronizing the Secondary
- Using the full synchronization feature
- Using block-level backup and Storage Checkpoint
- Using difference-based synchronization
- Examples for setting up a simple Volume Replicator configuration
- Appendix E. Migrating VVR from IPv4 to IPv6
- Migrating VVR to support IPv6 or dual stack
- About migrating to IPv6 when VCS global clustering and VVR agents are not configured
- About migrating to IPv6 when VCS global clustering and VVR agents are configured
- About migrating to IPv6 when VCS global clustering and VVR agents are configured in the presence of a bunker
- Migrating to IPv6 when VCS global clustering and VVR agents are configured in the presence of a bunker
- Appendix F. Sample main.cf files
Example - Taking over from an original Primary in a setup with multiple Secondaries
We recommend that you create RLINKs between the hosts london and tokyo when setting up the RDS.
In this example the Primary host seattle has failed. The example explains how to take over from the original Primary host seattle to the Secondary host london. This example also explains how to start replication from the new Primary london to the additional Secondary tokyo.
To take over from the Primary seattle to Secondary RVG on host london
- Make sure that the Secondary is consistent by using the following command to check that the consistent flag is set:
# vxprint -l rlink_name
- Make sure that the data volumes on the Secondary have associated DCMs.
# vxprint -g hrdg -ht hr_rvg
- Make the Secondary RVG hr_rvg the new Primary RVG by typing the following command on the Secondary london:
# vradmin -g hrdg takeover hr_rvg
The vradmin takeover command enables fast failback.
- Verify whether fast failback is enabled by typing the following command on the Secondary london:
# vxprint -l rlink_name
If fast failback is enabled, the dcm_logging flag is set.
- If you had created RLINKs between the Secondary london and the additional Secondary tokyo, host tokyo is automatically added to the new configuration.
Otherwise, you must manually add tokyo as a Secondary to the new Primary london. To do this, create RLINKs between london and tokyo and associate them to the respective RVGs using the following commands.
On host london:
# vxmake -g hrdg rlink rlk_tokyo_hr_rvg local_host=london \ remote_host=tokyo remote_rlink=rlk_london_hr_rvg \ remote_dg=hrdg # vxrlink -g hrdg assoc hr_rvg rlk_tokyo_hr_rvg
On host tokyo:
# vxmake -g hrdg rlink rlk_london_hr_rvg local_host=tokyo \ remote_host=london remote_rlink=rlk_tokyo_hr_rvg \ remote_dg=hrdg # vxrlink -g hrdg assoc hr_rvg rlk_london_hr_rvg
- By default, the vxmake rlink command creates the RLINK with the protocol set to TCP/IP. If necessary, change the protocol to UDP/IP.
- Even after takeover, the RLINK from tokyo to the original primary seattle still remains attached. Detach this RLINK using the following command on the new Primary london or on the Secondary tokyo:
# vradmin -g hrdg stoprep hr_rvg tokyo
On the new Primary london:
Synchronize the data volumes in the Secondary RVG hr_rvg on tokyo with the data volumes in the original Primary RVG hr_rvg using the difference-based synchronization and Storage Checkpoint. To do this, use the following command on any host in the RDS:
# vradmin -g hrdg -c checkpt syncrvg hr_rvg tokyo
The -c option when used with the vradmin syncrvg command automatically starts a Storage Checkpoint with the specified name, checkpt, in this example. After the data volumes are synchronized, the Storage Checkpoint is ended.
Start replication to tokyo using the Storage Checkpoint created above:
# vradmin -g hrdg -c checkpt startrep hr_rvg tokyo
- Start the application on the new Primary london. Starting the applications on the new Primary after a takeover may require an application recovery to be run.