InfoScale™ 9.0 Replication Administrator's Guide - AIX
- Section I. Getting started with Volume Replicator
- Introducing Volume Replicator
- Understanding how Volume Replicator works
- How VVR uses kernel buffers for replication
- Replication in a shared disk group environment
- Using SmartTier with VVR
- Understanding the VVR snapshot feature
- About VVR compression
- Planning and configuring replication
- Before you begin configuring
- Choosing the mode of volume replication
- Planning the network
- Sizing the SRL
- Understanding replication settings for a Secondary
- Configuring VVR in a VCS environment
- Using the primary-elect feature to choose the primary site after a site disaster or network disruption
- Requirements for configuring VVR in a VCS environment
- Example setting up VVR in a VCS environment
- Configuring the agents for a bunker replication configuration
- Section II. Setting up and administering VVR
- Setting up replication
- Creating a Replicated Data Set
- Creating a Primary RVG of an RDS
- Adding a Secondary to an RDS
- Changing the replication settings for a Secondary
- Synchronizing the Secondary and starting replication
- Starting replication when the data volumes are zero initialized
- Displaying configuration information
- Displaying RVG and RDS information
- Displaying information about data volumes and volume sets
- Displaying information about Secondaries
- Displaying statistics with the vrstat display commands
- Collecting consolidated statistics of the VVR components
- Displaying network performance data
- Administering Volume Replicator
- Administering data volumes
- Associating a volume to a Replicated Data Set
- Associating a volume set to an RDS
- Associating a Data Change Map to a data volume as a log plex
- Resizing a data volume in a Replicated Data Set
- Administering the SRL
- Incrementally synchronizing the Secondary after SRL overflow
- Administering replication
- Administering the Replicated Data Set
- Administering Storage Checkpoints
- Creating RVG snapshots
- Using the instant snapshot feature
- About instant full snapshots
- Preparing the volumes prior to using the instant snapshot feature
- Creating instant full snapshots
- About instant space-optimized snapshots
- Creating instant space-optimized snapshots
- About instant plex-breakoff snapshots
- Administering snapshots
- Using the traditional snapshot feature
- Using Veritas Volume Manager FastResync
- Verifying the DR readiness of a VVR setup
- Backing up the Secondary
- Administering data volumes
- Using VVR for off-host processing
- Transferring the Primary role
- Migrating the Primary
- About taking over from an original Primary
- Failing back to the original Primary
- Choosing the Primary site after a site disaster or network disruption
- Troubleshooting the primary-elect feature
- Replication using a bunker site
- Introduction to replication using a bunker site
- Setting up replication using a bunker site
- Using a bunker for disaster recovery
- Replication using a bunker site in a VCS environment
- Configuring and administering VVR using System Management Interface Tool
- Accessing Volume Replicator interface in SMIT
- Setting up a simple Volume Replicator configuration using SMIT
- Displaying configuration information using SMIT
- Administering Volume Replicator using SMIT
- Taking instant snapshot of data volumes of an RVG using SMIT
- Associating a volume to a Replicated Data Set using SMIT
- Transferring the Primary role using SMIT
- Troubleshooting VVR
- Recovery from configuration errors
- Errors during an RLINK attach
- Errors during modification of an RVG
- Recovery on the Primary or Secondary
- Recovering from Primary data volume error
- Primary SRL volume error cleanup and restart
- Primary SRL header error cleanup and recovery
- Secondary data volume error cleanup and recovery
- Tuning replication performance
- SRL layout
- Tuning Volume Replicator
- VVR buffer space
- Tuning VVR compression
- VVR buffer space
- Setting up replication
- Section III. Analyzing your environment with Volume Replicator Advisor
- Introducing Volume Replicator Advisor (VRAdvisor)
- Collecting the sample of data
- About collecting the sample of data
- Collecting the sample of data on UNIX
- Collecting the sample of data on Windows
- Analyzing the sample of data
- About analyzing the sample of data
- Analyzing the collected data
- Understanding the results of the analysis
- Viewing the analysis results
- Recalculating the analysis results
- Installing Volume Replicator Advisor (VRAdvisor)
- Section IV. VVR reference
- Appendix A. VVR command reference
- Appendix B. Using the In-band Control Messaging utility vxibc and the IBC programming API
- Using the IBC messaging command-line utility
- Examples - Off-host processing
- In-band Control Messaging API
- Appendix C. Volume Replicator object states
- Appendix D. Alternate methods for synchronizing the Secondary
- Using the full synchronization feature
- Using block-level backup and Storage Checkpoint
- Using difference-based synchronization
- Examples for setting up a simple Volume Replicator configuration
- Appendix E. Migrating VVR from IPv4 to IPv6
- Migrating VVR to support IPv6 or dual stack
- About migrating to IPv6 when VCS global clustering and VVR agents are not configured
- About migrating to IPv6 when VCS global clustering and VVR agents are configured
- About migrating to IPv6 when VCS global clustering and VVR agents are configured in the presence of a bunker
- Migrating to IPv6 when VCS global clustering and VVR agents are configured in the presence of a bunker
- Appendix F. Sample main.cf files
Performing online data verification
The space-optimized snapshots that are created using the vxrvg snapshot command can be used to verify whether the data on the Primary and Secondary RVG volumes is the same.
The major advantage of this feature over the vradmin -verify syncrvg command is that you do not need to stop the replication. The verification can be done even while the replication is in progress because the point-in-time snapshots, and not the volumes, are compared. This feature is very useful if you want to check the integrity of the data volumes on the Secondary when replication is in progress.
The vradmin verifydata command creates the space-optimized snapshots on the Primary and the Secondary before it proceeds with performing online data verification. The vradmin verifydata command also ensures that the snapshots are taken only after the replication has been paused using the vxibc freeze command. As a result there may be a momentary pause in the replication. It is necessary to freeze the writes so that the snapshots can be taken at an identical point in replication time, on each of the required hosts.
The vradmin verifydata then verifies the data between the remote and local hosts by comparing the space-optimized snapshots.
The vradmin verifydata command performs the following tasks:
Registering the application on the Primary and the Secondary.
Freezing replication on the Primary and Secondary.
Taking snapshots and verifying the data.
Destroying the snapshots.
By default, the vradmin verifydata command destroys the snapshot volume and the cache object after the data verification has proceeded successfully. However, if you want to preserve the snapshot volumes then you must use the vradmin verifydata command with the -k snap option. If you want to preserve the cache object then use the vradmin verifydata command with the -k cache option. The same cache object can then be reused when creating future snapshots. You cannot use the -k option if you have used the cachesize option, as it is an invalid combination and the command fails with an error message. Note that when specifying the -k option you must specify either the cache or the snap argument with it.
Note:
When the -k snap option is specified the cache object is also preserved along with the snapshot since the snapshot cannot exist without the cache object.
VVR also provides you with sample scripts that can be used to freeze the replication and then take instant space-optimized snapshots.
See Sample vradmin ibc command scripts.
Note:
If the data volumes used in the VVR Primary RVG have VxFS configured, the vradmin verifydata command may report false data differences between the Primary and the Secondary. Veritas recommends that you use file-level checksums to reverify that the differences exist.
To perform online data verification
- Prepare the volumes that need to be included in the snapshot.
See Preparing the volumes prior to using the instant snapshot feature.
- Create the required cache object within the same disk group as the data volume.
- To perform online data verification, use the command:
vradmin [-g diskgroup] [-k {cache|snap}] verifydata rvg_name \ sechost {cache=cacheobj | cachesize=size}
The attribute sechost specifies the name of the Secondary host.
The cache attribute specifies a name for the precreated cache object, on which the snapshots for the volumes in the specified RVG will be created. The cachesize attribute specifies a default size for the cache object with respect to the source volume.
You must specify only one of these attributes at one time for the command to create a cache object for each snapshot.