InfoScale™ 9.0 Replication Administrator's Guide - AIX
- Section I. Getting started with Volume Replicator
- Introducing Volume Replicator
- Understanding how Volume Replicator works
- How VVR uses kernel buffers for replication
- Replication in a shared disk group environment
- Using SmartTier with VVR
- Understanding the VVR snapshot feature
- About VVR compression
- Planning and configuring replication
- Before you begin configuring
- Choosing the mode of volume replication
- Planning the network
- Sizing the SRL
- Understanding replication settings for a Secondary
- Configuring VVR in a VCS environment
- Using the primary-elect feature to choose the primary site after a site disaster or network disruption
- Requirements for configuring VVR in a VCS environment
- Example setting up VVR in a VCS environment
- Configuring the agents for a bunker replication configuration
- Section II. Setting up and administering VVR
- Setting up replication
- Creating a Replicated Data Set
- Creating a Primary RVG of an RDS
- Adding a Secondary to an RDS
- Changing the replication settings for a Secondary
- Synchronizing the Secondary and starting replication
- Starting replication when the data volumes are zero initialized
- Displaying configuration information
- Displaying RVG and RDS information
- Displaying information about data volumes and volume sets
- Displaying information about Secondaries
- Displaying statistics with the vrstat display commands
- Collecting consolidated statistics of the VVR components
- Displaying network performance data
- Administering Volume Replicator
- Administering data volumes
- Associating a volume to a Replicated Data Set
- Associating a volume set to an RDS
- Associating a Data Change Map to a data volume as a log plex
- Resizing a data volume in a Replicated Data Set
- Administering the SRL
- Incrementally synchronizing the Secondary after SRL overflow
- Administering replication
- Administering the Replicated Data Set
- Administering Storage Checkpoints
- Creating RVG snapshots
- Using the instant snapshot feature
- About instant full snapshots
- Preparing the volumes prior to using the instant snapshot feature
- Creating instant full snapshots
- About instant space-optimized snapshots
- Creating instant space-optimized snapshots
- About instant plex-breakoff snapshots
- Administering snapshots
- Using the traditional snapshot feature
- Using Veritas Volume Manager FastResync
- Verifying the DR readiness of a VVR setup
- Backing up the Secondary
- Administering data volumes
- Using VVR for off-host processing
- Transferring the Primary role
- Migrating the Primary
- About taking over from an original Primary
- Failing back to the original Primary
- Choosing the Primary site after a site disaster or network disruption
- Troubleshooting the primary-elect feature
- Replication using a bunker site
- Introduction to replication using a bunker site
- Setting up replication using a bunker site
- Using a bunker for disaster recovery
- Replication using a bunker site in a VCS environment
- Configuring and administering VVR using System Management Interface Tool
- Accessing Volume Replicator interface in SMIT
- Setting up a simple Volume Replicator configuration using SMIT
- Displaying configuration information using SMIT
- Administering Volume Replicator using SMIT
- Taking instant snapshot of data volumes of an RVG using SMIT
- Associating a volume to a Replicated Data Set using SMIT
- Transferring the Primary role using SMIT
- Troubleshooting VVR
- Recovery from configuration errors
- Errors during an RLINK attach
- Errors during modification of an RVG
- Recovery on the Primary or Secondary
- Recovering from Primary data volume error
- Primary SRL volume error cleanup and restart
- Primary SRL header error cleanup and recovery
- Secondary data volume error cleanup and recovery
- Tuning replication performance
- SRL layout
- Tuning Volume Replicator
- VVR buffer space
- Tuning VVR compression
- VVR buffer space
- Setting up replication
- Section III. Analyzing your environment with Volume Replicator Advisor
- Introducing Volume Replicator Advisor (VRAdvisor)
- Collecting the sample of data
- About collecting the sample of data
- Collecting the sample of data on UNIX
- Collecting the sample of data on Windows
- Analyzing the sample of data
- About analyzing the sample of data
- Analyzing the collected data
- Understanding the results of the analysis
- Viewing the analysis results
- Recalculating the analysis results
- Installing Volume Replicator Advisor (VRAdvisor)
- Section IV. VVR reference
- Appendix A. VVR command reference
- Appendix B. Using the In-band Control Messaging utility vxibc and the IBC programming API
- Using the IBC messaging command-line utility
- Examples - Off-host processing
- In-band Control Messaging API
- Appendix C. Volume Replicator object states
- Appendix D. Alternate methods for synchronizing the Secondary
- Using the full synchronization feature
- Using block-level backup and Storage Checkpoint
- Using difference-based synchronization
- Examples for setting up a simple Volume Replicator configuration
- Appendix E. Migrating VVR from IPv4 to IPv6
- Migrating VVR to support IPv6 or dual stack
- About migrating to IPv6 when VCS global clustering and VVR agents are not configured
- About migrating to IPv6 when VCS global clustering and VVR agents are configured
- About migrating to IPv6 when VCS global clustering and VVR agents are configured in the presence of a bunker
- Migrating to IPv6 when VCS global clustering and VVR agents are configured in the presence of a bunker
- Appendix F. Sample main.cf files
Using the automatic synchronization feature
The Automatic Synchronization feature enables you to transfer the data on the Primary to the Secondary over the network. You can synchronize the Secondary using automatic synchronization either when the application is active or inactive.
The Automatic Synchronization procedure transfers data in the Primary data volumes to the Secondary by reading the Primary data volumes from start to finish and sending the data to the Secondary.
Note:
Automatic Synchronization does not maintain the order of writes; therefore, the Secondary is inconsistent until the process is complete.
The Secondary becomes consistent after the automatic synchronization completes. To use Automatic Synchronization successfully, the network must be sized appropriately. Note that the synchronization will complete only if the Primary receives writes at a lesser rate than they can be sent to the Secondary. If the Primary receives writes at a faster rate than they can be sent to the Secondary, the synchronization might never complete, especially if the writes are dispersed widely in the volume.
This feature enables you to synchronize multiple Secondary hosts at the same time. When performing automatic synchronization to multiple Secondary hosts, synchronization proceeds at the rate of the slowest network.
VVR pauses synchronization if the Secondary fails or the network disconnects. If the Primary fails while synchronization is in progress, the synchronization continues from the point at which it had stopped when the Primary recovers.
Prerequisite for using Automatic Synchronization
Each data volume in the Primary RVG must have a DCM associated to it. If data volumes do not have DCMs, an attempt to automatically synchronize a Secondary fails.
The vradmin startrep command when used with the option -a enables you to start replication and automatically synchronize the Secondary data volumes with the Primary data volumes in an RDS; it brings the Secondary data volumes up-to-date with the Primary data volumes. You can use this command to synchronize the Secondary when the data volumes contain data and when the application is active or inactive. Replication to another Secondary can be started only after this automatic synchronization completes.
The vradmin startrep command can be issued from any host in the RDS. To check the status and progress of the automatic synchronization, use the vxrlink status command on the Primary RLINK.
See Displaying the status of a Secondary.
To synchronize the Secondary and start replication using automatic synchronization, issue the following command:
# vradmin -g diskgroup -a startrep local_rvgname sec_hostname
The argument local_rvgname is the name of the RVG on the local host and represents its RDS.
The argument sec_hostname is the name of the Secondary host displayed in the output of the vradmin printrvg command. If the RDS contains only one Secondary, the sec_hostname is optional.
Example - Using the Automatic Synchronization Feature
In this example, the data volumes in the Primary RVG hr_rvg on host seattle contain valid data and the application is active. To start replication and synchronize the Secondary RVG hr_rvg on host london, issue the following command:
# vradmin -g hrdg -a startrep hr_rvg london