InfoScale™ 9.0 Replication Administrator's Guide - AIX
- Section I. Getting started with Volume Replicator
- Introducing Volume Replicator
- Understanding how Volume Replicator works
- How VVR uses kernel buffers for replication
- Replication in a shared disk group environment
- Using SmartTier with VVR
- Understanding the VVR snapshot feature
- About VVR compression
- Planning and configuring replication
- Before you begin configuring
- Choosing the mode of volume replication
- Planning the network
- Sizing the SRL
- Understanding replication settings for a Secondary
- Configuring VVR in a VCS environment
- Using the primary-elect feature to choose the primary site after a site disaster or network disruption
- Requirements for configuring VVR in a VCS environment
- Example setting up VVR in a VCS environment
- Configuring the agents for a bunker replication configuration
- Section II. Setting up and administering VVR
- Setting up replication
- Creating a Replicated Data Set
- Creating a Primary RVG of an RDS
- Adding a Secondary to an RDS
- Changing the replication settings for a Secondary
- Synchronizing the Secondary and starting replication
- Starting replication when the data volumes are zero initialized
- Displaying configuration information
- Displaying RVG and RDS information
- Displaying information about data volumes and volume sets
- Displaying information about Secondaries
- Displaying statistics with the vrstat display commands
- Collecting consolidated statistics of the VVR components
- Displaying network performance data
- Administering Volume Replicator
- Administering data volumes
- Associating a volume to a Replicated Data Set
- Associating a volume set to an RDS
- Associating a Data Change Map to a data volume as a log plex
- Resizing a data volume in a Replicated Data Set
- Administering the SRL
- Incrementally synchronizing the Secondary after SRL overflow
- Administering replication
- Administering the Replicated Data Set
- Administering Storage Checkpoints
- Creating RVG snapshots
- Using the instant snapshot feature
- About instant full snapshots
- Preparing the volumes prior to using the instant snapshot feature
- Creating instant full snapshots
- About instant space-optimized snapshots
- Creating instant space-optimized snapshots
- About instant plex-breakoff snapshots
- Administering snapshots
- Using the traditional snapshot feature
- Using Veritas Volume Manager FastResync
- Verifying the DR readiness of a VVR setup
- Backing up the Secondary
- Administering data volumes
- Using VVR for off-host processing
- Transferring the Primary role
- Migrating the Primary
- About taking over from an original Primary
- Failing back to the original Primary
- Choosing the Primary site after a site disaster or network disruption
- Troubleshooting the primary-elect feature
- Replication using a bunker site
- Introduction to replication using a bunker site
- Setting up replication using a bunker site
- Using a bunker for disaster recovery
- Replication using a bunker site in a VCS environment
- Configuring and administering VVR using System Management Interface Tool
- Accessing Volume Replicator interface in SMIT
- Setting up a simple Volume Replicator configuration using SMIT
- Displaying configuration information using SMIT
- Administering Volume Replicator using SMIT
- Taking instant snapshot of data volumes of an RVG using SMIT
- Associating a volume to a Replicated Data Set using SMIT
- Transferring the Primary role using SMIT
- Troubleshooting VVR
- Recovery from configuration errors
- Errors during an RLINK attach
- Errors during modification of an RVG
- Recovery on the Primary or Secondary
- Recovering from Primary data volume error
- Primary SRL volume error cleanup and restart
- Primary SRL header error cleanup and recovery
- Secondary data volume error cleanup and recovery
- Tuning replication performance
- SRL layout
- Tuning Volume Replicator
- VVR buffer space
- Tuning VVR compression
- VVR buffer space
- Setting up replication
- Section III. Analyzing your environment with Volume Replicator Advisor
- Introducing Volume Replicator Advisor (VRAdvisor)
- Collecting the sample of data
- About collecting the sample of data
- Collecting the sample of data on UNIX
- Collecting the sample of data on Windows
- Analyzing the sample of data
- About analyzing the sample of data
- Analyzing the collected data
- Understanding the results of the analysis
- Viewing the analysis results
- Recalculating the analysis results
- Installing Volume Replicator Advisor (VRAdvisor)
- Section IV. VVR reference
- Appendix A. VVR command reference
- Appendix B. Using the In-band Control Messaging utility vxibc and the IBC programming API
- Using the IBC messaging command-line utility
- Examples - Off-host processing
- In-band Control Messaging API
- Appendix C. Volume Replicator object states
- Appendix D. Alternate methods for synchronizing the Secondary
- Using the full synchronization feature
- Using block-level backup and Storage Checkpoint
- Using difference-based synchronization
- Examples for setting up a simple Volume Replicator configuration
- Appendix E. Migrating VVR from IPv4 to IPv6
- Migrating VVR to support IPv6 or dual stack
- About migrating to IPv6 when VCS global clustering and VVR agents are not configured
- About migrating to IPv6 when VCS global clustering and VVR agents are configured
- About migrating to IPv6 when VCS global clustering and VVR agents are configured in the presence of a bunker
- Migrating to IPv6 when VCS global clustering and VVR agents are configured in the presence of a bunker
- Appendix F. Sample main.cf files
Best practices for setting up replication
Set up replication according to the following best practices:
Create one RVG for each application, rather than for each server. For example, if a server is running three separate databases that are being replicated, create three separate RVGs for each database. Creating three separate RVGs helps to avoid write-order dependency between the applications and provides three separate SRLs for maximum performance per application.
Create one RVG per disk group. Creating one RVG per disk group enables you to efficiently implement application clustering for high availability, where only one RVG needs to be failed over by the service group. If the disk group contains more than one RVG, the applications using the other RVGs would have to be stopped to facilitate the failover. You can use the Disk Group Split feature to migrate application volumes to their own disk groups before associating the volumes to the RVG.
Plan the size and layout of the data volumes based on the requirement of your application.
Plan the size of the network between the Primary and each Secondary host.
Lay out the SRL appropriately to support the performance characteristics needed by the application. Because all writes to the data volumes in an RVG are first written to the SRL, the total write performance of an RVG is bound by the total write performance of the SRL. For example, dedicate separate disks to SRLs and if possible dedicate separate controllers to the SRL.
Size the SRL appropriately to avoid overflow.
See Sizing the SRL.
The Volume Replicator Advisor (VRAdvisor), a tool to collect and analyze samples of data, can help you determine the optimal size of the SRL.
Include all the data volumes used by the application in the same RVG. This is mandatory.
Provide dedicated bandwidth for VVR over a separate network. The RLINK replicates data critical to the survival of the business. Compromising the RLINK compromises the business recovery plan.
Use the same names for the data volumes on the Primary and Secondary nodes. If the data volumes on the Primary and Secondary have different names, you must map the name of the Secondary data volume to the appropriate Primary data volume.
See Mapping the name of a Secondary data volume to a differently named Primary data volume.
Use the same name and size for the SRLs on the Primary and Secondary nodes because the Secondary SRL becomes the Primary SRL when the Primary role is transferred.
Mirror all data volumes and SRLs. This is optional if you use hardware-based mirroring.
The vradmin utility creates corresponding RVGs on the Secondary of the same name as the Primary. If you choose to use the vxmake command to create RVGs, use the same names for corresponding RVGs on the Primary and Secondary nodes.
Associate a DCM to each data volume on the Primary and the Secondary if the DCMs had been removed for some reason. By default, the vradmin createpri and vradmin addsec commands add DCMs if they do not exist.
In a shared disk group environment, currently only the cvm master node should be assigned the logowner role. It is recommended to enable the PreOnline trigger for the RVGLogOwner agent, so that the VVR logowner always resides on the CVM master node.
In a shared disk group environment, currently only the cvm master node should be assigned the logowner role.
The on-board write cache should not be used with VVR. The application must also store data to disk rather than maintaining it in memory. The takeover system, which could be a peer primary node in case of clustered configurations or the secondary site, must be capable of accessing all required information. This requirement precludes the use of anything inside a single system inaccessible by the peer. NVRAM accelerator boards and other disk caching mechanisms for performance are acceptable, but must be done on the external array and not on the local host.