InfoScale™ 9.0 Replication Administrator's Guide - AIX
- Section I. Getting started with Volume Replicator
- Introducing Volume Replicator
- Understanding how Volume Replicator works
- How VVR uses kernel buffers for replication
- Replication in a shared disk group environment
- Using SmartTier with VVR
- Understanding the VVR snapshot feature
- About VVR compression
- Planning and configuring replication
- Before you begin configuring
- Choosing the mode of volume replication
- Planning the network
- Sizing the SRL
- Understanding replication settings for a Secondary
- Configuring VVR in a VCS environment
- Using the primary-elect feature to choose the primary site after a site disaster or network disruption
- Requirements for configuring VVR in a VCS environment
- Example setting up VVR in a VCS environment
- Configuring the agents for a bunker replication configuration
- Section II. Setting up and administering VVR
- Setting up replication
- Creating a Replicated Data Set
- Creating a Primary RVG of an RDS
- Adding a Secondary to an RDS
- Changing the replication settings for a Secondary
- Synchronizing the Secondary and starting replication
- Starting replication when the data volumes are zero initialized
- Displaying configuration information
- Displaying RVG and RDS information
- Displaying information about data volumes and volume sets
- Displaying information about Secondaries
- Displaying statistics with the vrstat display commands
- Collecting consolidated statistics of the VVR components
- Displaying network performance data
- Administering Volume Replicator
- Administering data volumes
- Associating a volume to a Replicated Data Set
- Associating a volume set to an RDS
- Associating a Data Change Map to a data volume as a log plex
- Resizing a data volume in a Replicated Data Set
- Administering the SRL
- Incrementally synchronizing the Secondary after SRL overflow
- Administering replication
- Administering the Replicated Data Set
- Administering Storage Checkpoints
- Creating RVG snapshots
- Using the instant snapshot feature
- About instant full snapshots
- Preparing the volumes prior to using the instant snapshot feature
- Creating instant full snapshots
- About instant space-optimized snapshots
- Creating instant space-optimized snapshots
- About instant plex-breakoff snapshots
- Administering snapshots
- Using the traditional snapshot feature
- Using Veritas Volume Manager FastResync
- Verifying the DR readiness of a VVR setup
- Backing up the Secondary
- Administering data volumes
- Using VVR for off-host processing
- Transferring the Primary role
- Migrating the Primary
- About taking over from an original Primary
- Failing back to the original Primary
- Choosing the Primary site after a site disaster or network disruption
- Troubleshooting the primary-elect feature
- Replication using a bunker site
- Introduction to replication using a bunker site
- Setting up replication using a bunker site
- Using a bunker for disaster recovery
- Replication using a bunker site in a VCS environment
- Configuring and administering VVR using System Management Interface Tool
- Accessing Volume Replicator interface in SMIT
- Setting up a simple Volume Replicator configuration using SMIT
- Displaying configuration information using SMIT
- Administering Volume Replicator using SMIT
- Taking instant snapshot of data volumes of an RVG using SMIT
- Associating a volume to a Replicated Data Set using SMIT
- Transferring the Primary role using SMIT
- Troubleshooting VVR
- Recovery from configuration errors
- Errors during an RLINK attach
- Errors during modification of an RVG
- Recovery on the Primary or Secondary
- Recovering from Primary data volume error
- Primary SRL volume error cleanup and restart
- Primary SRL header error cleanup and recovery
- Secondary data volume error cleanup and recovery
- Tuning replication performance
- SRL layout
- Tuning Volume Replicator
- VVR buffer space
- Tuning VVR compression
- VVR buffer space
- Setting up replication
- Section III. Analyzing your environment with Volume Replicator Advisor
- Introducing Volume Replicator Advisor (VRAdvisor)
- Collecting the sample of data
- About collecting the sample of data
- Collecting the sample of data on UNIX
- Collecting the sample of data on Windows
- Analyzing the sample of data
- About analyzing the sample of data
- Analyzing the collected data
- Understanding the results of the analysis
- Viewing the analysis results
- Recalculating the analysis results
- Installing Volume Replicator Advisor (VRAdvisor)
- Section IV. VVR reference
- Appendix A. VVR command reference
- Appendix B. Using the In-band Control Messaging utility vxibc and the IBC programming API
- Using the IBC messaging command-line utility
- Examples - Off-host processing
- In-band Control Messaging API
- Appendix C. Volume Replicator object states
- Appendix D. Alternate methods for synchronizing the Secondary
- Using the full synchronization feature
- Using block-level backup and Storage Checkpoint
- Using difference-based synchronization
- Examples for setting up a simple Volume Replicator configuration
- Appendix E. Migrating VVR from IPv4 to IPv6
- Migrating VVR to support IPv6 or dual stack
- About migrating to IPv6 when VCS global clustering and VVR agents are not configured
- About migrating to IPv6 when VCS global clustering and VVR agents are configured
- About migrating to IPv6 when VCS global clustering and VVR agents are configured in the presence of a bunker
- Migrating to IPv6 when VCS global clustering and VVR agents are configured in the presence of a bunker
- Appendix F. Sample main.cf files
Identifying the most up-to-date Secondary
VVR provides the vxrlink updates command to identify the most up-to-date Secondary in a VVR configuration. The vxrlink updates command can be issued on a Secondary only.
For multiple Secondaries, the vxrlink updates command enables you to determine the Secondary that contains the most up-to-date data and hence the most suitable replacement for the Primary in the case of a takeover.
For a single Secondary, the vxrlink updates command can be used to determine the extent to which the Secondary is behind the Primary. You can decide whether or not to take over the Primary role by looking at the update ID of the Secondary, number of updates the Primary is ahead of the Secondary, and how long you expect the Primary to be unavailable.
Issue the following command on the Secondary.
# vxrlink -g diskgroup -T updates rlink_name
To display only the update ID in the output, use the vxrlink updates command without the -T option. The output displays the update ID as a sequence number. A sequence number is a 64-bit value that increases incrementally and therefore is unique for each new update. The output of the vxrlink updates command displays the 64-bit number as two 32-bit sequence numbers separated by a dot. For example:
high_seq_num . low_seq_num
To display the exact time on the Primary at which the Secondary is up-to-date, use the vxrlink updates command with the -T option. The -T option displays the exact time in hours by which the Secondary is behind. Note that the update information may be inaccurate if:
the Secondary has been rebooted and even before it comes up, the Primary becomes unavailable.
the Secondary reboots and the RLINK gets disconnected.
The output of the vxrlink -T updates command is displayed in a three column structure with two rows; ID and Time. The ID row displays the update IDs. The timestamp in the Time row indicates the time at which the update was written on the Primary. The time is displayed in Mon date time format, where Mon is a locale abbreviated month name followed by the date and the time in the locale's appropriate time format.
The first column displays the last update ID and the time at which it was written on the Primary.
The second column displays the last update ID that has been received on the Secondary and the time when it was written on the Primary. If the Secondary is up-to-date then the ID and the time in this column is the same as that in the first column. However, if the Secondary is behind, then the ID and the time is different from that in the first column.
The third column indicates the exact number of updates by which the Secondary is behind and also the time in the locale's appropriate time format by which it is behind. This value is obtained as a difference between the second and first column.
Note:
If the system time is reset to a value different from that of the current system time, the output of the vxrlink -T updates command appropriately shows a negative or an inaccurate value, until the updates that were completed before resetting the system time are replicated.