Storage Foundation 7.4.1 Administrator's Guide - Linux
- Section I. Introducing Storage Foundation
- Overview of Storage Foundation
- How Dynamic Multi-Pathing works
- How Veritas Volume Manager works
- How Veritas Volume Manager works with the operating system
- How Veritas Volume Manager handles storage management
- Volume layouts in Veritas Volume Manager
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- How VxVM handles hardware clones or snapshots
- Volume encryption
- How Veritas File System works
- Section II. Provisioning storage
- Provisioning new storage
- Advanced allocation methods for configuring storage
- Customizing allocation behavior
- Using rules to make volume allocation more efficient
- Understanding persistent attributes
- Customizing disk classes for allocation
- Specifying allocation constraints for vxassist operations with the use clause and the require clause
- Creating volumes of a specific layout
- Customizing allocation behavior
- Creating and mounting VxFS file systems
- Creating a VxFS file system
- Mounting a VxFS file system
- tmplog mount option
- ioerror mount option
- largefiles and nolargefiles mount options
- Resizing a file system
- Monitoring free space
- Extent attributes
- Section III. Administering multi-pathing with DMP
- Administering Dynamic Multi-Pathing
- Discovering and configuring newly added disk devices
- About discovering disks and dynamically adding disk arrays
- How to administer the Device Discovery Layer
- Administering DMP using the vxdmpadm utility
- Gathering and displaying I/O statistics
- Specifying the I/O policy
- Discovering and configuring newly added disk devices
- Dynamic Reconfiguration of devices
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Managing devices
- Displaying disk information
- Changing the disk device naming scheme
- Adding and removing disks
- Event monitoring
- Administering Dynamic Multi-Pathing
- Section IV. Administering Storage Foundation
- Administering sites and remote mirrors
- About sites and remote mirrors
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Failure and recovery scenarios
- Administering sites and remote mirrors
- Section V. Optimizing I/O performance
- Veritas File System I/O
- Veritas Volume Manager I/O
- Managing application I/O workloads using maximum IOPS settings
- Section VI. Using Point-in-time copies
- Understanding point-in-time copy methods
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Volume-level snapshots
- Storage Checkpoints
- About FileSnaps
- About snapshot file systems
- Administering volume snapshots
- Traditional third-mirror break-off snapshots
- Full-sized instant snapshots
- Creating instant snapshots
- Adding an instant snap DCO and DCO volume
- Controlling instant snapshot synchronization
- Creating instant snapshots
- Cascaded snapshots
- Adding a version 0 DCO and DCO volume
- Administering Storage Checkpoints
- Storage Checkpoint administration
- Administering FileSnaps
- Administering snapshot file systems
- Understanding point-in-time copy methods
- Section VII. Optimizing storage with Storage Foundation
- Understanding storage optimization solutions in Storage Foundation
- Migrating data from thick storage to thin storage
- Maintaining Thin Storage with Thin Reclamation
- Reclamation of storage on thin reclamation arrays
- Identifying thin and thin reclamation LUNs
- Veritas InfoScale 4k sector device support solution
- Section VIII. Maximizing storage utilization
- Understanding storage tiering with SmartTier
- Creating and administering volume sets
- Multi-volume file systems
- Features implemented using multi-volume file system (MVFS) support
- Adding a volume to and removing a volume from a multi-volume file system
- Volume encapsulation
- Load balancing
- Administering SmartTier
- About SmartTier
- Placement classes
- Administering placement policies
- File placement policy rules
- Multiple criteria in file placement policy rule statements
- Using SmartTier with solid state disks
- Sub-file relocation
- Administering hot-relocation
- How hot-relocation works
- Moving relocated subdisks
- Deduplicating data
- Compressing files
- About compressing files
- Use cases for compressing files
- Section IX. Administering storage
- Managing volumes and disk groups
- Rules for determining the default disk group
- Moving volumes or disks
- Monitoring and controlling tasks
- Performing online relayout
- Adding a mirror to a volume
- Managing disk groups
- Disk group versions
- Displaying disk group information
- Importing a disk group
- Moving disk groups between systems
- Importing a disk group containing hardware cloned disks
- Handling conflicting configuration copies
- Destroying a disk group
- Backing up and restoring disk group configuration data
- Managing plexes and subdisks
- Decommissioning storage
- Rootability
- Encapsulating a disk
- Rootability
- Sample supported root disk layouts for encapsulation
- Encapsulating and mirroring the root disk
- Administering an encapsulated boot disk
- Quotas
- Using Veritas File System quotas
- File Change Log
- Managing volumes and disk groups
- Section X. Reference
- Appendix A. Reverse path name lookup
- Appendix B. Tunable parameters
- Tuning the VxFS file system
- Methods to change Dynamic Multi-Pathing tunable parameters
- Tunable parameters for VxVM
- Methods to change Veritas Volume Manager tunable parameters
- Appendix C. Command reference
Reorganizing the contents of disk groups
There are several circumstances under which you might want to reorganize the contents of your existing disk groups:
To group volumes or disks differently as the needs of your organization change. For example, you might want to split disk groups to match the boundaries of separate departments, or to join disk groups when departments are merged.
To isolate volumes or disks from a disk group, and process them independently on the same host or on a different host. This allows you to implement off-host processing solutions for the purposes of backup or decision support.
To reduce the size of a disk group's configuration database in the event that its private region is nearly full. This is a much simpler solution than the alternative of trying to grow the private region.
To perform online maintenance and upgrading of fault-tolerant systems that can be split into separate hosts for this purpose, and then rejoined.
Use the vxdg command to reorganize your disk groups.
The vxdg command provides the following operations for reorganizing disk groups:
The move operation moves a self-contained set of VxVM objects between imported disk groups. This operation fails if it would remove all the disks from the source disk group. Volume states are preserved across the move.
Figure: Disk group move operation shows the move operation.
The split operation removes a self-contained set of VxVM objects from an imported disk group, and moves them to a newly created target disk group. This operation fails if it would remove all the disks from the source disk group, or if an imported disk group exists with the same name as the target disk group.
Figure: Disk group split operation shows the split operation.
The join operation removes all VxVM objects from an imported disk group and moves them to an imported target disk group. The source disk group is removed when the join is complete.
Figure: Disk group join operation shows the join operation.
These operations are performed on VxVM objects such as disks or top-level volumes, and include all component objects such as sub-volumes, plexes and subdisks. The objects to be moved must be self-contained, meaning that the disks that are moved must not contain any other objects that are not intended for the move.
For site-consistent disk groups, any of the move operations (move, split, and join) fail if the VxVM objects that are moved would not meet the site consistency conditions after the move. For example, a volume that is being moved may not have a plex on one of the sites configured in the target disk group. The volume would not meet the conditions for the allsites flag in the target disk group. Use the -f (force) option to enable the operation to succeed, by turning off the allsites flag on the object.
If you specify one or more disks to be moved, all VxVM objects on the disks are moved. You can use the -o expand option to ensure that vxdg moves all disks on which the specified objects are configured. Take care when doing this as the result may not always be what you expect. You can use the listmove operation with vxdg to help you establish what is the self-contained set of objects that corresponds to a specified set of objects.
Warning:
Before moving volumes between disk groups, stop all applications that are accessing the volumes, and unmount all file systems that are configured on these volumes.
If the system crashes or a hardware subsystem fails, VxVM attempts to complete or reverse an incomplete disk group reconfiguration when the system is restarted or the hardware subsystem is repaired, depending on how far the reconfiguration had progressed. If one of the disk groups is no longer available because it has been imported by another host or because it no longer exists, you must recover the disk group manually.
See the Veritas InfoScale Troubleshooting Guide.