Storage Foundation 7.4.1 Administrator's Guide - Linux
- Section I. Introducing Storage Foundation
- Overview of Storage Foundation
- How Dynamic Multi-Pathing works
- How Veritas Volume Manager works
- How Veritas Volume Manager works with the operating system
- How Veritas Volume Manager handles storage management
- Volume layouts in Veritas Volume Manager
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- How VxVM handles hardware clones or snapshots
- Volume encryption
- How Veritas File System works
- Section II. Provisioning storage
- Provisioning new storage
- Advanced allocation methods for configuring storage
- Customizing allocation behavior
- Using rules to make volume allocation more efficient
- Understanding persistent attributes
- Customizing disk classes for allocation
- Specifying allocation constraints for vxassist operations with the use clause and the require clause
- Creating volumes of a specific layout
- Customizing allocation behavior
- Creating and mounting VxFS file systems
- Creating a VxFS file system
- Mounting a VxFS file system
- tmplog mount option
- ioerror mount option
- largefiles and nolargefiles mount options
- Resizing a file system
- Monitoring free space
- Extent attributes
- Section III. Administering multi-pathing with DMP
- Administering Dynamic Multi-Pathing
- Discovering and configuring newly added disk devices
- About discovering disks and dynamically adding disk arrays
- How to administer the Device Discovery Layer
- Administering DMP using the vxdmpadm utility
- Gathering and displaying I/O statistics
- Specifying the I/O policy
- Discovering and configuring newly added disk devices
- Dynamic Reconfiguration of devices
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Managing devices
- Displaying disk information
- Changing the disk device naming scheme
- Adding and removing disks
- Event monitoring
- Administering Dynamic Multi-Pathing
- Section IV. Administering Storage Foundation
- Administering sites and remote mirrors
- About sites and remote mirrors
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Failure and recovery scenarios
- Administering sites and remote mirrors
- Section V. Optimizing I/O performance
- Veritas File System I/O
- Veritas Volume Manager I/O
- Managing application I/O workloads using maximum IOPS settings
- Section VI. Using Point-in-time copies
- Understanding point-in-time copy methods
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Volume-level snapshots
- Storage Checkpoints
- About FileSnaps
- About snapshot file systems
- Administering volume snapshots
- Traditional third-mirror break-off snapshots
- Full-sized instant snapshots
- Creating instant snapshots
- Adding an instant snap DCO and DCO volume
- Controlling instant snapshot synchronization
- Creating instant snapshots
- Cascaded snapshots
- Adding a version 0 DCO and DCO volume
- Administering Storage Checkpoints
- Storage Checkpoint administration
- Administering FileSnaps
- Administering snapshot file systems
- Understanding point-in-time copy methods
- Section VII. Optimizing storage with Storage Foundation
- Understanding storage optimization solutions in Storage Foundation
- Migrating data from thick storage to thin storage
- Maintaining Thin Storage with Thin Reclamation
- Reclamation of storage on thin reclamation arrays
- Identifying thin and thin reclamation LUNs
- Veritas InfoScale 4k sector device support solution
- Section VIII. Maximizing storage utilization
- Understanding storage tiering with SmartTier
- Creating and administering volume sets
- Multi-volume file systems
- Features implemented using multi-volume file system (MVFS) support
- Adding a volume to and removing a volume from a multi-volume file system
- Volume encapsulation
- Load balancing
- Administering SmartTier
- About SmartTier
- Placement classes
- Administering placement policies
- File placement policy rules
- Multiple criteria in file placement policy rule statements
- Using SmartTier with solid state disks
- Sub-file relocation
- Administering hot-relocation
- How hot-relocation works
- Moving relocated subdisks
- Deduplicating data
- Compressing files
- About compressing files
- Use cases for compressing files
- Section IX. Administering storage
- Managing volumes and disk groups
- Rules for determining the default disk group
- Moving volumes or disks
- Monitoring and controlling tasks
- Performing online relayout
- Adding a mirror to a volume
- Managing disk groups
- Disk group versions
- Displaying disk group information
- Importing a disk group
- Moving disk groups between systems
- Importing a disk group containing hardware cloned disks
- Handling conflicting configuration copies
- Destroying a disk group
- Backing up and restoring disk group configuration data
- Managing plexes and subdisks
- Decommissioning storage
- Rootability
- Encapsulating a disk
- Rootability
- Sample supported root disk layouts for encapsulation
- Encapsulating and mirroring the root disk
- Administering an encapsulated boot disk
- Quotas
- Using Veritas File System quotas
- File Change Log
- Managing volumes and disk groups
- Section X. Reference
- Appendix A. Reverse path name lookup
- Appendix B. Tunable parameters
- Tuning the VxFS file system
- Methods to change Dynamic Multi-Pathing tunable parameters
- Tunable parameters for VxVM
- Methods to change Veritas Volume Manager tunable parameters
- Appendix C. Command reference
Adding a version 0 DCO and DCO volume
To put Persistent FastResync into effect for a volume, a data change object (DCO) and DCO volume must be associated with that volume. After you add a DCO object and DCO volume to a volume, you can enable Persistent FastResync on the volume.
Note:
You need a FastResync license key to use the FastResync feature. Even if you do not have a license, you can configure a DCO object and DCO volume so that snap objects are associated with the original and snapshot volumes.
The procedure in this section describes adding a version 0 layout DCO. A version 0 DCO layout supports traditional (third-mirror break-off) snapshots that are administered with the vxassist command. A version 0 DCO layout does not support full-sized or space-optimized instant snapshots.
To add a DCO object and DCO volume to an existing volume
- Ensure that the disk group containing the existing volume has at least disk group version 90. To check the version of a disk group:
# vxdg list diskgroup
If required, upgrade the disk group to the latest version:
# vxdg upgrade diskgroup
- Turn off Non-Persistent FastResync on the original volume if it is currently enabled:
# vxvol [-g diskgroup] set fastresync=off volume
If you are uncertain about which volumes have Non-Persistent FastResync enabled, use the following command to obtain a listing of such volumes.
Note:
The ! character is a special character in some shells. The following example shows how to escape it in a bash shell.
# vxprint [-g diskgroup] -F "%name" \ -e "v_fastresync=on && \!v_hasdcolog"
- Add a DCO and DCO volume to the existing volume (which may already have dirty region logging (DRL) enabled):
# vxassist [-g diskgroup] addlog volume logtype=dco \ [ndcomirror=number] [dcolen=size] [storage_attributes]
For non-layered volumes, the default number of plexes in the mirrored DCO volume is equal to the lesser of the number of plexes in the data volume or 2. For layered volumes, the default number of DCO plexes is always 2. If required, use the ndcomirror attribute to specify a different number. It is recommended that you configure as many DCO plexes as there are existing data and snapshot plexes in the volume. For example, specify ndcomirror=3 when adding a DCO to a 3-way mirrored volume.
The default size of each plex is 132 blocks. You can use the dcolen attribute to specify a different size. If specified, the size of the plex must be an integer multiple of 33 blocks from 33 up to a maximum of 2112 blocks.
You can specify vxassist-style storage attributes to define the disks that can or cannot be used for the plexes of the DCO volume.
More Information