Storage Foundation 7.4.1 Administrator's Guide - Linux
- Section I. Introducing Storage Foundation
- Overview of Storage Foundation
- How Dynamic Multi-Pathing works
- How Veritas Volume Manager works
- How Veritas Volume Manager works with the operating system
- How Veritas Volume Manager handles storage management
- Volume layouts in Veritas Volume Manager
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- How VxVM handles hardware clones or snapshots
- Volume encryption
- How Veritas File System works
- Section II. Provisioning storage
- Provisioning new storage
- Advanced allocation methods for configuring storage
- Customizing allocation behavior
- Using rules to make volume allocation more efficient
- Understanding persistent attributes
- Customizing disk classes for allocation
- Specifying allocation constraints for vxassist operations with the use clause and the require clause
- Creating volumes of a specific layout
- Customizing allocation behavior
- Creating and mounting VxFS file systems
- Creating a VxFS file system
- Mounting a VxFS file system
- tmplog mount option
- ioerror mount option
- largefiles and nolargefiles mount options
- Resizing a file system
- Monitoring free space
- Extent attributes
- Section III. Administering multi-pathing with DMP
- Administering Dynamic Multi-Pathing
- Discovering and configuring newly added disk devices
- About discovering disks and dynamically adding disk arrays
- How to administer the Device Discovery Layer
- Administering DMP using the vxdmpadm utility
- Gathering and displaying I/O statistics
- Specifying the I/O policy
- Discovering and configuring newly added disk devices
- Dynamic Reconfiguration of devices
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Managing devices
- Displaying disk information
- Changing the disk device naming scheme
- Adding and removing disks
- Event monitoring
- Administering Dynamic Multi-Pathing
- Section IV. Administering Storage Foundation
- Administering sites and remote mirrors
- About sites and remote mirrors
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Failure and recovery scenarios
- Administering sites and remote mirrors
- Section V. Optimizing I/O performance
- Veritas File System I/O
- Veritas Volume Manager I/O
- Managing application I/O workloads using maximum IOPS settings
- Section VI. Using Point-in-time copies
- Understanding point-in-time copy methods
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Volume-level snapshots
- Storage Checkpoints
- About FileSnaps
- About snapshot file systems
- Administering volume snapshots
- Traditional third-mirror break-off snapshots
- Full-sized instant snapshots
- Creating instant snapshots
- Adding an instant snap DCO and DCO volume
- Controlling instant snapshot synchronization
- Creating instant snapshots
- Cascaded snapshots
- Adding a version 0 DCO and DCO volume
- Administering Storage Checkpoints
- Storage Checkpoint administration
- Administering FileSnaps
- Administering snapshot file systems
- Understanding point-in-time copy methods
- Section VII. Optimizing storage with Storage Foundation
- Understanding storage optimization solutions in Storage Foundation
- Migrating data from thick storage to thin storage
- Maintaining Thin Storage with Thin Reclamation
- Reclamation of storage on thin reclamation arrays
- Identifying thin and thin reclamation LUNs
- Veritas InfoScale 4k sector device support solution
- Section VIII. Maximizing storage utilization
- Understanding storage tiering with SmartTier
- Creating and administering volume sets
- Multi-volume file systems
- Features implemented using multi-volume file system (MVFS) support
- Adding a volume to and removing a volume from a multi-volume file system
- Volume encapsulation
- Load balancing
- Administering SmartTier
- About SmartTier
- Placement classes
- Administering placement policies
- File placement policy rules
- Multiple criteria in file placement policy rule statements
- Using SmartTier with solid state disks
- Sub-file relocation
- Administering hot-relocation
- How hot-relocation works
- Moving relocated subdisks
- Deduplicating data
- Compressing files
- About compressing files
- Use cases for compressing files
- Section IX. Administering storage
- Managing volumes and disk groups
- Rules for determining the default disk group
- Moving volumes or disks
- Monitoring and controlling tasks
- Performing online relayout
- Adding a mirror to a volume
- Managing disk groups
- Disk group versions
- Displaying disk group information
- Importing a disk group
- Moving disk groups between systems
- Importing a disk group containing hardware cloned disks
- Handling conflicting configuration copies
- Destroying a disk group
- Backing up and restoring disk group configuration data
- Managing plexes and subdisks
- Decommissioning storage
- Rootability
- Encapsulating a disk
- Rootability
- Sample supported root disk layouts for encapsulation
- Encapsulating and mirroring the root disk
- Administering an encapsulated boot disk
- Quotas
- Using Veritas File System quotas
- File Change Log
- Managing volumes and disk groups
- Section X. Reference
- Appendix A. Reverse path name lookup
- Appendix B. Tunable parameters
- Tuning the VxFS file system
- Methods to change Dynamic Multi-Pathing tunable parameters
- Tunable parameters for VxVM
- Methods to change Veritas Volume Manager tunable parameters
- Appendix C. Command reference
RELOCATE statement examples
The following example illustrates an unconditional relocation statement, which is the simplest form of the RELOCATE policy rule statement:
<RELOCATE> <FROM> <SOURCE> <CLASS>tier1</CLASS> </SOURCE> </FROM> <TO> <DESTINATION> <CLASS>tier2</CLASS> </DESTINATION> </TO> </RELOCATE>
The files designated by the rule's SELECT statement that reside on volumes in placement class tier1
at the time the fsppadm enforce command executes would be unconditionally relocated to volumes in placement class tier2
as long as space permitted. This type of rule might be used, for example, with applications that create and access new files but seldom access existing files once they have been processed. A CREATE statement would specify creation on tier1
volumes, which are presumably high performance or high availability, or both. Each instantiation of fsppadm enforce would relocate files created since the last run to tier2
volumes.
The following example illustrates a more comprehensive form of the RELOCATE statement that uses access age as the criterion for relocating files from tier1
volumes to tier2
volumes. This rule is designed to maintain free space on tier1
volumes by relocating inactive files to tier2
volumes:
<RELOCATE> <FROM> <SOURCE> <CLASS>tier1</CLASS> </SOURCE> </FROM> <TO> <DESTINATION> <CLASS>tier2</CLASS> </DESTINATION> </TO> <WHEN> <SIZE Units="MB"> <MIN Flags="gt">1</MIN> <MAX Flags="lt">1000</MAX> </SIZE> <ACCAGE Units="days"> <MIN Flags="gt">30</MIN> </ACCAGE> </WHEN> </RELOCATE>
Files designated by the rule's SELECT statement are relocated from tier1
volumes to tier2
volumes if they are between 1 MB and 1000 MB in size and have not been accessed for 30 days. VxFS relocates qualifying files in the order in which it encounters them as it scans the file system's directory tree. VxFS stops scheduling qualifying files for relocation when when it calculates that already-scheduled relocations would result in tier2
volumes being fully occupied.
The following example illustrates a possible companion rule that relocates files from tier2
volumes to tier1
ones based on their I/O temperatures. This rule might be used to return files that had been relocated to tier2
volumes due to inactivity to tier1
volumes when application activity against them increases. Using I/O temperature rather than access age as the relocation criterion reduces the chance of relocating files that are not actually being used frequently by applications. This rule does not cause files to be relocated unless there is sustained activity against them over the most recent two-day period.
<RELOCATE> <FROM> <SOURCE> <CLASS>tier2</CLASS> </SOURCE> </FROM> <TO> <DESTINATION> <CLASS>tier1</CLASS> </DESTINATION> </TO> <WHEN> <IOTEMP Type="nrbytes"> <MIN Flags="gt">5</MIN> <PERIOD>2</PERIOD> </IOTEMP> </WHEN> </RELOCATE>
This rule relocates files that reside on tier2
volumes to tier1
volumes if their I/O temperatures are above 5 for the two day period immediately preceding the issuing of the fsppadm enforce command. VxFS relocates qualifying files in the order in which it encounters them during its file system directory tree scan. When tier1
volumes are fully occupied, VxFS stops scheduling qualifying files for relocation.
VxFS file placement policies are able to control file placement across any number of placement classes. The following example illustrates a rule for relocating files with low I/O temperatures from tier1
volumes to tier2
volumes, and to tier3
volumes when tier2
volumes are fully occupied:
<RELOCATE> <FROM> <SOURCE> <CLASS>tier1</CLASS> </SOURCE> </FROM> <TO> <DESTINATION> <CLASS>tier2</CLASS> </DESTINATION> <DESTINATION> <CLASS>tier3</CLASS> </DESTINATION> </TO> <WHEN> <IOTEMP Type="nrbytes"> <MAX Flags="lt">4</MAX> <PERIOD>3</PERIOD> </IOTEMP> </WHEN> </RELOCATE>
This rule relocates files whose 3-day I/O temperatures are less than 4 and which reside on tier1
volumes. When VxFS calculates that already-relocated files would result in tier2
volumes being fully occupied, VxFS relocates qualifying files to tier3
volumes instead. VxFS relocates qualifying files as it encounters them in its scan of the file system directory tree.
The <FROM> clause in the RELOCATE statement is optional. If the clause is not present, VxFS evaluates files designated by the rule's SELECT statement for relocation no matter which volumes they reside on when the fsppadm enforce command is issued. The following example illustrates a fragment of a policy rule that relocates files according to their sizes, no matter where they reside when the fsppadm enforce command is issued:
<RELOCATE> <TO> <DESTINATION> <CLASS>tier1</CLASS> </DESTINATION> </TO> <WHEN> <SIZE Units="MB"> <MAX Flags="lt">10</MAX> </SIZE> </WHEN> </RELOCATE> <RELOCATE> <TO> <DESTINATION> <CLASS>tier2</CLASS> </DESTINATION> </TO> <WHEN> <SIZE Units="MB"> <MIN Flags="gteq">10</MIN> <MAX Flags="lt">100</MAX> </SIZE> </WHEN> </RELOCATE> <RELOCATE> <TO> <DESTINATION> <CLASS>tier3</CLASS> </DESTINATION> </TO> <WHEN> <SIZE Units="MB"> <MIN Flags="gteq">100</MIN> </SIZE> </WHEN> </RELOCATE>
This rule relocates files smaller than 10 megabytes to tier1
volumes, files between 10 and 100 megabytes to tier2
volumes, and files larger than 100 megabytes to tier3
volumes. VxFS relocates all qualifying files that do not already reside on volumes in their DESTINATION placement classes when the fsppadm enforce command is issued.
The following example compresses while relocating all of the files from tier2
with the extension dbf
to tier4
if the file was accessed over 30 days ago:
<SELECT Flags="Data"> <PATTERN> *.dbf </PATTERN> </SELECT> <RELOCATE> <FROM> <SOURCE> <CLASS> tier2 </CLASS> </SOURCE> </FROM> <TO Flags="compress"> <DESTINATION> <CLASS> tier4 </CLASS> </DESTINATION> </TO> <WHEN> <ACCAGE Units="days"> <MIN Flags="gt">30</MIN> </ACCAGE> </WHEN> </RELOCATE>
The following example uncompresses while relocating all of the files from tier3
with the extension dbf
to tier1
if the file was accessed over 1 hour ago:
<SELECT Flags="Data"> <PATTERN> *.dbf </PATTERN> </SELECT> <RELOCATE> <FROM> <SOURCE> <CLASS> tier3 </CLASS> </SOURCE> </FROM> <TO Flags="uncompress"> <DESTINATION> <CLASS> tier1 </CLASS> </DESTINATION> </TO> <WHEN> <ACCAGE Units="hours"> <MIN Flags="gt">1</MIN> </ACCAGE> </WHEN> </RELOCATE>