Dynamic Multi-Pathing 7.3.1 Administrator's Guide - Linux

Last Published:
Product(s): InfoScale & Storage Foundation (7.3.1)
  1. Understanding DMP
    1.  
      About Dynamic Multi-Pathing (DMP)
    2. How DMP works
      1. How DMP monitors I/O on paths
        1.  
          Path failover mechanism
        2.  
          Subpaths Failover Group (SFG)
        3.  
          Low Impact Path Probing (LIPP)
        4.  
          I/O throttling
      2.  
        Load balancing
      3. DMP in a clustered environment
        1.  
          About enabling or disabling controllers with shared disk groups
    3.  
      Multi-controller ALUA support
    4.  
      Multiple paths to disk arrays
    5.  
      Device discovery
    6.  
      Disk devices
    7. Disk device naming in DMP
      1.  
        About operating system-based naming
      2. About enclosure-based naming
        1.  
          Summary of enclosure-based naming
        2.  
          Enclosure based naming with the Array Volume Identifier (AVID) attribute
  2. Setting up DMP to manage native devices
    1.  
      About setting up DMP to manage native devices
    2.  
      Displaying the native multi-pathing configuration
    3.  
      Migrating LVM volume groups to DMP
    4.  
      Migrating to DMP from EMC PowerPath
    5.  
      Migrating to DMP from Hitachi Data Link Manager (HDLM)
    6.  
      Migrating to DMP from Linux Device Mapper Multipath
    7. Using Dynamic Multi-Pathing (DMP) devices with Oracle Automatic Storage Management (ASM)
      1.  
        Enabling Dynamic Multi-Pathing (DMP) devices for use with Oracle Automatic Storage Management (ASM)
      2.  
        Removing Dynamic Multi-Pathing (DMP) devices from the listing of Oracle Automatic Storage Management (ASM) disks
      3.  
        Migrating Oracle Automatic Storage Management (ASM) disk groups on operating system devices to Dynamic Multi-Pathing (DMP) devices
    8.  
      Adding DMP devices to an existing LVM volume group or creating a new LVM volume group
    9.  
      Removing DMP support for native devices
  3. Administering DMP
    1.  
      About enabling and disabling I/O for controllers and storage processors
    2.  
      About displaying DMP database information
    3.  
      Displaying the paths to a disk
    4.  
      Setting customized names for DMP nodes
    5. Administering DMP using the vxdmpadm utility
      1.  
        Retrieving information about a DMP node
      2.  
        Displaying consolidated information about the DMP nodes
      3.  
        Displaying the members of a LUN group
      4.  
        Displaying paths controlled by a DMP node, controller, enclosure, or array port
      5.  
        Displaying information about controllers
      6.  
        Displaying information about enclosures
      7.  
        Displaying information about array ports
      8.  
        User-friendly CLI outputs for ALUA arrays
      9.  
        Displaying information about devices controlled by third-party drivers
      10.  
        Displaying extended device attributes
      11.  
        Suppressing or including devices from VxVM control
      12. Gathering and displaying I/O statistics
        1.  
          Displaying cumulative I/O statistics
        2.  
          Displaying statistics for queued or erroneous I/Os
        3.  
          Examples of using the vxdmpadm iostat command
      13.  
        Setting the attributes of the paths to an enclosure
      14.  
        Displaying the redundancy level of a device or enclosure
      15.  
        Specifying the minimum number of active paths
      16.  
        Displaying the I/O policy
      17. Specifying the I/O policy
        1.  
          Scheduling I/O on the paths of an Asymmetric Active/Active or an ALUA array
        2.  
          Example of applying load balancing in a SAN
      18.  
        Disabling I/O for paths, controllers, array ports, or DMP nodes
      19.  
        Enabling I/O for paths, controllers, array ports, or DMP nodes
      20.  
        Renaming an enclosure
      21.  
        Configuring the response to I/O failures
      22.  
        Configuring the I/O throttling mechanism
      23.  
        Configuring Subpaths Failover Groups (SFG)
      24.  
        Configuring Low Impact Path Probing (LIPP)
      25.  
        Displaying recovery option values
      26.  
        Configuring DMP path restoration policies
      27.  
        Stopping the DMP path restoration thread
      28.  
        Displaying the status of the DMP path restoration thread
      29.  
        Configuring Array Policy Modules
  4. Administering disks
    1.  
      About disk management
    2. Discovering and configuring newly added disk devices
      1.  
        Partial device discovery
      2. About discovering disks and dynamically adding disk arrays
        1.  
          How DMP claims devices
        2.  
          Disk categories
        3.  
          Adding DMP support for a new disk array
        4.  
          Enabling discovery of new disk arrays
      3.  
        About third-party driver coexistence
      4. How to administer the Device Discovery Layer
        1.  
          Listing all the devices including iSCSI
        2.  
          Listing all the Host Bus Adapters including iSCSI
        3.  
          Listing the ports configured on a Host Bus Adapter
        4.  
          Listing the targets configured from a Host Bus Adapter or a port
        5.  
          Listing the devices configured from a Host Bus Adapter and target
        6.  
          Getting or setting the iSCSI operational parameters
        7.  
          Listing all supported disk arrays
        8.  
          Excluding support for a disk array library
        9.  
          Re-including support for an excluded disk array library
        10.  
          Listing excluded disk arrays
        11.  
          Listing disks claimed in the DISKS category
        12.  
          Displaying details about an Array Support Library
        13.  
          Adding unsupported disk arrays to the DISKS category
        14.  
          Removing disks from the DISKS category
        15.  
          Foreign devices
    3. Changing the disk device naming scheme
      1.  
        Displaying the disk-naming scheme
      2.  
        Regenerating persistent device names
      3.  
        Changing device naming for enclosures controlled by third-party drivers
    4.  
      Discovering the association between enclosure-based disk names and OS-based disk names
  5. Dynamic Reconfiguration of devices
    1.  
      About online Dynamic Reconfiguration
    2. Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
      1.  
        Removing LUNs dynamically from an existing target ID
      2.  
        Adding new LUNs dynamically to a target ID
      3.  
        Replacing LUNs dynamically from an existing target ID
      4.  
        Replacing a host bus adapter online
    3. Manually reconfiguring a LUN online that is under DMP control
      1.  
        Overview of manually reconfiguring a LUN
      2.  
        Manually removing LUNs dynamically from an existing target ID
      3.  
        Manually adding new LUNs dynamically to a new target ID
      4.  
        About detecting target ID reuse if the operating system device tree is not cleaned up
      5.  
        Scanning an operating system device tree after adding or removing LUNs
      6.  
        Manually cleaning up the operating system device tree after removing LUNs
    4.  
      Changing the characteristics of a LUN from the array side
    5.  
      Upgrading the array controller firmware online
    6.  
      Reformatting NVMe devices manually
  6. Event monitoring
    1.  
      About the Dynamic Multi-Pathing (DMP) event source daemon (vxesd)
    2.  
      Fabric Monitoring and proactive error detection
    3.  
      Dynamic Multi-Pathing (DMP) discovery of iSCSI and SAN Fibre Channel topology
    4.  
      DMP event logging
    5.  
      Starting and stopping the Dynamic Multi-Pathing (DMP) event source daemon
  7. Performance monitoring and tuning
    1.  
      About tuning Dynamic Multi-Pathing (DMP) with templates
    2.  
      DMP tuning templates
    3.  
      Example DMP tuning template
    4.  
      Tuning a DMP host with a configuration attribute template
    5.  
      Managing the DMP configuration files
    6.  
      Resetting the DMP tunable parameters and attributes to the default values
    7.  
      DMP tunable parameters and attributes that are supported for templates
    8.  
      DMP tunable parameters
  8. Appendix A. DMP troubleshooting
    1.  
      Recovering from errors when you exclude or include paths to DMP
    2.  
      Downgrading the array support
  9. Appendix B. Reference
    1.  
      Command completion for Veritas commands

Enclosure based naming with the Array Volume Identifier (AVID) attribute

By default, Dynamic Multi-Pathing (DMP) assigns enclosure-based names to DMP metadevices using an array-specific attribute called the Array Volume ID (AVID). The AVID provides a unique identifier for the LUN that is provided by the array. The ASL corresponding to the array provides the AVID property. Within an array enclosure, DMP uses the Array Volume Identifier (AVID) as an index in the DMP metanode name. The DMP metanode name is in the format enclosureID_AVID.

With the introduction of AVID to the enclosure-based naming (EBN) naming scheme, identifying storage devices becomes much easier. The array volume identifier (AVID) enables you to have consistent device naming across multiple nodes connected to the same storage. The disk access name never changes, because it is based on the name defined by the array itself.

Note:

DMP does not support AVID with third party drivers.

If DMP does not have access to a device's AVID, it retrieves another unique LUN identifier called the LUN serial number. DMP sorts the devices based on the LUN Serial Number (LSN), and then assigns the index number. All hosts see the same set of devices, so all hosts will have the same sorted list, leading to consistent device indices across the cluster. In this case, the DMP metanode name is in the format enclosureID_index.

DMP also supports a scalable framework, that allows you to fully customize the device names on a host by applying a device naming file that associates custom names with cabinet and LUN serial numbers.

If a Cluster Volume Manager (CVM) cluster is symmetric, each node in the cluster accesses the same set of disks. Enclosure-based names provide a consistent naming system so that the device names are the same on each node.

The Dynamic Multi-Pathing (DMP) utilities such as vxdisk list display the DMP metanode name, which includes the AVID property. Use the AVID to correlate the DMP metanode name to the LUN displayed in the array management interface (GUI or CLI) .

For example, on an EMC CX array where the enclosure is emc_clariion0 and the array volume ID provided by the ASL is 91, the DMP metanode name is emc_clariion0_91. The following sample output shows the DMP metanode names:

$ vxdisk list
emc_clariion0_91  auto:cdsdisk  emc_clariion0_91   dg1  online shared
emc_clariion0_92  auto:cdsdisk  emc_clariion0_92   dg1  online shared
emc_clariion0_93  auto:cdsdisk  emc_clariion0_93   dg1  online shared
emc_clariion0_282 auto:cdsdisk  emc_clariion0_282  dg1  online shared
emc_clariion0_283 auto:cdsdisk  emc_clariion0_283  dg1  online shared
emc_clariion0_284 auto:cdsdisk  emc_clariion0_284  dg1  online shared
# vxddladm get namingscheme 
NAMING_SCHEME       PERSISTENCE    LOWERCASE      USE_AVID
==========================================================
Enclosure Based     Yes            Yes            Yes