InfoScale™ 9.0 Storage Foundation Administrator's Guide - AIX
- Section I. Introducing Storage Foundation
- Overview of Storage Foundation
- How Dynamic Multi-Pathing works
- How Volume Manager works
- How Volume Manager works with the operating system
- How Volume Manager handles storage management
- Volume layouts in Veritas Volume Manager
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- How VxVM handles hardware clones or snapshots
- How Veritas File System works
- Section II. Provisioning storage
- Provisioning new storage
- Advanced allocation methods for configuring storage
- Customizing allocation behavior
- Using rules to make volume allocation more efficient
- Understanding persistent attributes
- Customizing disk classes for allocation
- Specifying allocation constraints for vxassist operations with the use clause and the require clause
- Creating volumes of a specific layout
- Customizing allocation behavior
- Creating and mounting VxFS file systems
- Creating a VxFS file system
- Mounting a VxFS file system
- tmplog mount option
- ioerror mount option
- largefiles and nolargefiles mount options
- Resizing a file system
- Monitoring free space
- Extent attributes
- Section III. Administering multi-pathing with DMP
- Administering Dynamic Multi-Pathing
- Discovering and configuring newly added disk devices
- About discovering disks and dynamically adding disk arrays
- How to administer the Device Discovery Layer
- Administering DMP using the vxdmpadm utility
- Gathering and displaying I/O statistics
- Specifying the I/O policy
- Discovering and configuring newly added disk devices
- Dynamic Reconfiguration of devices
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Managing devices
- Displaying disk information
- Changing the disk device naming scheme
- Adding and removing disks
- Event monitoring
- Administering Dynamic Multi-Pathing
- Section IV. Administering Storage Foundation
- Administering sites and remote mirrors
- About sites and remote mirrors
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Failure and recovery scenarios
- Administering sites and remote mirrors
- Section V. Optimizing I/O performance
- Section VI. Using Point-in-time copies
- Understanding point-in-time copy methods
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Volume-level snapshots
- Storage Checkpoints
- About FileSnaps
- About snapshot file systems
- Administering volume snapshots
- Traditional third-mirror break-off snapshots
- Full-sized instant snapshots
- Creating instant snapshots
- Adding an instant snap DCO and DCO volume
- Controlling instant snapshot synchronization
- Creating instant snapshots
- Cascaded snapshots
- Adding a version 0 DCO and DCO volume
- Administering Storage Checkpoints
- Storage Checkpoint administration
- Administering FileSnaps
- Administering snapshot file systems
- Understanding point-in-time copy methods
- Section VII. Optimizing storage with Storage Foundation
- Understanding storage optimization solutions in Storage Foundation
- Migrating data from thick storage to thin storage
- Maintaining Thin Storage with Thin Reclamation
- Reclamation of storage on thin reclamation arrays
- Identifying thin and thin reclamation LUNs
- InfoScale 4K sector device support solution
- Section VIII. Maximizing storage utilization
- Understanding storage tiering with SmartTier
- Creating and administering volume sets
- Multi-volume file systems
- Features implemented using multi-volume file system (MVFS) support
- Adding a volume to and removing a volume from a multi-volume file system
- Volume encapsulation
- Load balancing
- Administering SmartTier
- About SmartTier
- Placement classes
- Administering placement policies
- File placement policy rules
- Multiple criteria in file placement policy rule statements
- Using SmartTier with solid state disks
- Sub-file relocation
- Administering hot-relocation
- How hot-relocation works
- Moving relocated subdisks
- Compressing files
- About compressing files
- Use cases for compressing files
- Section IX. Administering and protecting storage
- Administering VxVM volumes as paging devices
- Managing volumes and disk groups
- Rules for determining the default disk group
- Moving volumes or disks
- Monitoring and controlling tasks
- Performing online relayout
- Adding a mirror to a volume
- Managing disk groups
- Disk group versions
- Displaying disk group information
- Importing a disk group
- Moving disk groups between systems
- Importing a disk group containing hardware cloned disks
- Handling conflicting configuration copies
- Destroying a disk group
- Backing up and restoring disk group configuration data
- Managing plexes and subdisks
- Decommissioning storage
- Using DMP with a SAN boot disk
- Configuring DMP for SAN booting
- Administering the root volume group (rootvg) under DMP control
- Extending an LVM rootvg that is enabled for DMP
- Quotas
- Using Veritas File System quotas
- File Change Log
- Section X. Reference
- Appendix A. Reverse path name lookup
- Appendix B. Tunable parameters
- Tuning the VxFS file system
- Methods to change Dynamic Multi-Pathing tunable parameters
- Tunable parameters for VxVM
- Methods to change Veritas Volume Manager tunable parameters
- Appendix C. Command reference
- Appendix D. Executive Order logging
Creating and managing linked break-off snapshot volumes
Linked break-off snapshots are suitable for write-intensive volumes. Specifically, they are used for off-host processing, because the snapshot could be in a different disk group to start with and could avoid disk group split/join operations
For linked break-off snapshots, you must prepare a volume that is to be used as the snapshot volume. This must be the same size as the volume for which the snapshot is being created, and it must also have the same region size.
The attributes for a snapshot are specified as a tuple to the vxsnap make command. This command accepts multiple tuples. One tuple is required for each snapshot that is being created. Each element of a tuple is separated from the next by a slash character (/). Tuples are separated by white space.
To create and manage a linked break-off snapshot
- Use the following command to link the prepared snapshot volume, snapvol, to the data volume:
# vxsnap [-g diskgroup] [-b] addmir volume mirvol=snapvol \ [mirdg=snapdg]
The optional mirdg attribute can be used to specify the snapshot volume's current disk group, snapdg. The -b option can be used to perform the synchronization in the background. If the -b option is not specified, the command does not return until the link becomes ACTIVE.
For example, the following command links the prepared volume, prepsnap, in the disk group, mysnapdg, to the volume, vol1, in the disk group, mydg:
# vxsnap -g mydg -b addmir vol1 mirvol=prepsnap mirdg=mysnapdg
If the -b option is specified, you can use the vxsnap snapwait command to wait for the synchronization of the linked snapshot volume to complete, as shown in this example:
# vxsnap -g mydg snapwait vol1 mirvol=prepsnap mirdg=mysnapvoldg
- To create a linked break-off snapshot, use the following form of the vxsnap make command.
# vxsnap [-g diskgroup] make source=volume/snapvol=snapvol\ [/snapdg=snapdiskgroup]
The snapdg attribute must be used to specify the snapshot volume's disk group if this is different from that of the data volume.
For example, to use the prepared volume, prepsnap, as the snapshot for the volume, vol1, in the disk group, mydg, use the following command:
# vxsnap -g mydg make source=vol1/snapvol=prepsnap/snapdg=mysnapdg
- Use fsck (or some utility appropriate for the application running on the volume) to clean the temporary volume's contents. For example, you can use this command with a VxFS file system:
# fsck -V vxfs /dev/vx/dsk/diskgroup/snapshot
The specified device must have a valid entry in the /etc/filesystems file.
- To backup the data in the snapshot, use an appropriate utility or operating system command to copy the contents of the snapshot to tape, or to some other backup medium.
You now have the following options:
Refresh the contents of the snapshot. This creates a new point-in-time image of the original volume ready for another backup. If synchronization was already in progress on the snapshot, this operation may result in large portions of the snapshot having to be resynchronized.
Reattach the snapshot volume with the original volume.
Dissociate the snapshot volume entirely from the original volume. This may be useful if you want to use the copy for other purposes such as testing or report generation. If desired, you can delete the dissociated volume.
If the snapshot is part of a snapshot hierarchy, you can also choose to split this hierarchy from its parent volumes.