InfoScale™ 9.0 Storage Foundation Administrator's Guide - AIX
- Section I. Introducing Storage Foundation
- Overview of Storage Foundation
- How Dynamic Multi-Pathing works
- How Volume Manager works
- How Volume Manager works with the operating system
- How Volume Manager handles storage management
- Volume layouts in Veritas Volume Manager
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- How VxVM handles hardware clones or snapshots
- How Veritas File System works
- Section II. Provisioning storage
- Provisioning new storage
- Advanced allocation methods for configuring storage
- Customizing allocation behavior
- Using rules to make volume allocation more efficient
- Understanding persistent attributes
- Customizing disk classes for allocation
- Specifying allocation constraints for vxassist operations with the use clause and the require clause
- Creating volumes of a specific layout
- Customizing allocation behavior
- Creating and mounting VxFS file systems
- Creating a VxFS file system
- Mounting a VxFS file system
- tmplog mount option
- ioerror mount option
- largefiles and nolargefiles mount options
- Resizing a file system
- Monitoring free space
- Extent attributes
- Section III. Administering multi-pathing with DMP
- Administering Dynamic Multi-Pathing
- Discovering and configuring newly added disk devices
- About discovering disks and dynamically adding disk arrays
- How to administer the Device Discovery Layer
- Administering DMP using the vxdmpadm utility
- Gathering and displaying I/O statistics
- Specifying the I/O policy
- Discovering and configuring newly added disk devices
- Dynamic Reconfiguration of devices
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Managing devices
- Displaying disk information
- Changing the disk device naming scheme
- Adding and removing disks
- Event monitoring
- Administering Dynamic Multi-Pathing
- Section IV. Administering Storage Foundation
- Administering sites and remote mirrors
- About sites and remote mirrors
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Failure and recovery scenarios
- Administering sites and remote mirrors
- Section V. Optimizing I/O performance
- Section VI. Using Point-in-time copies
- Understanding point-in-time copy methods
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Volume-level snapshots
- Storage Checkpoints
- About FileSnaps
- About snapshot file systems
- Administering volume snapshots
- Traditional third-mirror break-off snapshots
- Full-sized instant snapshots
- Creating instant snapshots
- Adding an instant snap DCO and DCO volume
- Controlling instant snapshot synchronization
- Creating instant snapshots
- Cascaded snapshots
- Adding a version 0 DCO and DCO volume
- Administering Storage Checkpoints
- Storage Checkpoint administration
- Administering FileSnaps
- Administering snapshot file systems
- Understanding point-in-time copy methods
- Section VII. Optimizing storage with Storage Foundation
- Understanding storage optimization solutions in Storage Foundation
- Migrating data from thick storage to thin storage
- Maintaining Thin Storage with Thin Reclamation
- Reclamation of storage on thin reclamation arrays
- Identifying thin and thin reclamation LUNs
- InfoScale 4K sector device support solution
- Section VIII. Maximizing storage utilization
- Understanding storage tiering with SmartTier
- Creating and administering volume sets
- Multi-volume file systems
- Features implemented using multi-volume file system (MVFS) support
- Adding a volume to and removing a volume from a multi-volume file system
- Volume encapsulation
- Load balancing
- Administering SmartTier
- About SmartTier
- Placement classes
- Administering placement policies
- File placement policy rules
- Multiple criteria in file placement policy rule statements
- Using SmartTier with solid state disks
- Sub-file relocation
- Administering hot-relocation
- How hot-relocation works
- Moving relocated subdisks
- Compressing files
- About compressing files
- Use cases for compressing files
- Section IX. Administering and protecting storage
- Administering VxVM volumes as paging devices
- Managing volumes and disk groups
- Rules for determining the default disk group
- Moving volumes or disks
- Monitoring and controlling tasks
- Performing online relayout
- Adding a mirror to a volume
- Managing disk groups
- Disk group versions
- Displaying disk group information
- Importing a disk group
- Moving disk groups between systems
- Importing a disk group containing hardware cloned disks
- Handling conflicting configuration copies
- Destroying a disk group
- Backing up and restoring disk group configuration data
- Managing plexes and subdisks
- Decommissioning storage
- Using DMP with a SAN boot disk
- Configuring DMP for SAN booting
- Administering the root volume group (rootvg) under DMP control
- Extending an LVM rootvg that is enabled for DMP
- Quotas
- Using Veritas File System quotas
- File Change Log
- Section X. Reference
- Appendix A. Reverse path name lookup
- Appendix B. Tunable parameters
- Tuning the VxFS file system
- Methods to change Dynamic Multi-Pathing tunable parameters
- Tunable parameters for VxVM
- Methods to change Veritas Volume Manager tunable parameters
- Appendix C. Command reference
- Appendix D. Executive Order logging
Removing a disk from a disk group
Before you can remove the last disk from a disk group, you must disable the disk group.
As an alternative to disabling the disk group, you can destroy it.
If a disk contains no subdisks, you can remove it from its disk group with the following command:
# vxdg [-g diskgroup ] rmdisk diskname
For example, to remove mydg02 from the disk group mydg, enter the following:
# vxdg -g mydg rmdisk mydg02
If the disk has subdisks on it when you try to remove it, the following error message is displayed:
VxVM vxdg ERROR V-5-1-552 Disk diskname is used by one or more subdisks Use -k to remove device assignment.
Using the -k option lets you remove the disk even if it has subdisks.
Warning:
Use of the -k option to vxdg can result in data loss.
After you remove the disk from its disk group, you can (optionally) remove it from VxVM control completely. Enter the following:
# vxdiskunsetup devicename
For example, to remove the disk hdisk9 from VxVM control, enter the following:
# vxdiskunsetup hdisk9
You can remove a disk on which some subdisks of volumes are defined. For example, you can consolidate all the volumes onto one disk. If you use vxdiskadm to remove a disk, you can choose to move volumes off that disk. To do this, run vxdiskadm and select Remove a disk from the main menu.
If the disk is used by some volumes, this message is displayed:
VxVM ERROR V-5-2-369 The following volumes currently use part of disk mydg02: home usrvol Volumes must be moved from mydg02 before it can be removed. Move volumes to other disks? [y,n,q,?] (default: n)
If you choose y, all volumes are moved off the disk, if possible. Some volumes may not be movable. The most common reasons why a volume may not be movable are as follows:
There is not enough space on the remaining disks.
Plexes or striped subdisks cannot be allocated on different disks from existing plexes or striped subdisks in the volume.
If vxdiskadm cannot move some volumes, you may need to remove some plexes from some disks to free more space before proceeding with the disk removal operation.