InfoScale™ 9.0 Solutions Guide - Linux
- Section I. Introducing Veritas InfoScale
- Section II. Solutions for Veritas InfoScale products
- Solutions for Veritas InfoScale products
- Solutions for Veritas InfoScale products
- Section III. Stack-level migration to IPv6 or dual stack
- Section IV. Improving database performance
- Overview of database accelerators
- Improving database performance with Veritas Concurrent I/O
- Improving database performance with atomic write I/O
- Section V. Using point-in-time copies
- Understanding point-in-time copy methods
- Backing up and recovering
- Preserving multiple point-in-time copies
- Online database backups
- Backing up on an off-host cluster file system
- Database recovery using Storage Checkpoints
- Backing up and recovering in a NetBackup environment
- Off-host processing
- Creating and refreshing test environments
- Creating point-in-time copies of files
- Section VI. Maximizing storage utilization
- Optimizing storage tiering with SmartTier
- Optimizing storage with Flexible Storage Sharing
- Optimizing storage tiering with SmartTier
- Section VII. Migrating data
- Understanding data migration
- Offline migration from LVM to VxVM
- Offline conversion of native file system to VxFS
- Online migration of a native file system to the VxFS file system
- Migrating a source file system to the VxFS file system over NFS v4
- VxFS features not available during online migration
- Migrating storage arrays
- Migrating data between platforms
- Overview of the Cross-Platform Data Sharing (CDS) feature
- CDS disk format and disk groups
- Setting up your system to use Cross-platform Data Sharing (CDS)
- Maintaining your system
- Disk tasks
- Disk group tasks
- Displaying information
- File system considerations
- Specifying the migration target
- Using the fscdsadm command
- Maintaining the list of target operating systems
- Migrating a file system on an ongoing basis
- Converting the byte order of a file system
- Migrating from Oracle ASM to Veritas File System
- Section VIII. Veritas InfoScale 4K sector device support solution
- Section IX. REST API support
- Support for configurations and operations using REST APIs
- Support for configurations and operations using REST APIs
- Section X. Reference
Data integrity in volume snapshots
A volume snapshot captures the data that exists in a volume at a given point in time. As such, VxVM does not have any knowledge of data that is cached in memory by the overlying file system, or by applications such as databases that have files open in the file system. Snapshots are always crash consistent, that is, the snapshot can be put to use by letting the application perform its recovery. This is similar to how the application recovery occurs after a server crash. If the fsgen volume usage type is set on a volume that contains a mounted Veritas File System (VxFS), VxVM coordinates with VxFS to flush data that is in the cache to the volume. Therefore, these snapshots are always VxFS consistent and require no VxFS recovery while mounting.
For databases, a suitable mechanism must additionally be used to ensure the integrity of tablespace data when the volume snapshot is taken. The facility to temporarily suspend file system I/O is provided by most modern database software. The examples provided in this document illustrate how to perform this operation. For ordinary files in a file system, which may be open to a wide variety of different applications, there may be no way to ensure the complete integrity of the file data other than by shutting down the applications and temporarily unmounting the file system. In many cases, it may only be important to ensure the integrity of file data that is not in active use at the time that you take the snapshot. However, in all scenarios where application coordinate, snapshots are crash-recoverable.