InfoScale™ 9.0 Solutions Guide - Linux

Last Published:
Product(s): InfoScale & Storage Foundation (9.0)
Platform: Linux
  1. Section I. Introducing Veritas InfoScale
    1. Introducing Veritas InfoScale
      1.  
        About the Arctera InfoScale product suite
      2.  
        Components of the Arctera InfoScale product suite
  2. Section II. Solutions for Veritas InfoScale products
    1. Solutions for Veritas InfoScale products
      1.  
        Use cases for Veritas InfoScale products
      2.  
        Feature support across Veritas InfoScale 9.0 products
      3.  
        Using SmartMove and Thin Provisioning with Sybase databases
      4.  
        Running multiple parallel applications within a single cluster using the application isolation feature
      5.  
        Scaling FSS storage capacity with dedicated storage nodes using application isolation feature
      6.  
        Finding Veritas InfoScale product use cases information
  3. Section III. Stack-level migration to IPv6 or dual stack
    1. Stack-level migration to IPv6 or dual stack
      1.  
        Migrating Veritas InfoScale products to support IPv6/dual-stack
  4. Section IV. Improving database performance
    1. Overview of database accelerators
      1.  
        About Arctera InfoScale™ product components database accelerators
    2. Improving database performance with Veritas Concurrent I/O
      1. About Concurrent I/O
        1.  
          How Concurrent I/O works
      2. Tasks for enabling and disabling Concurrent I/O
        1.  
          Enabling Concurrent I/O for Sybase
        2.  
          Disabling Concurrent I/O for Sybase
    3. Improving database performance with atomic write I/O
      1.  
        About the atomic write I/O
      2.  
        Requirements for atomic write I/O
      3.  
        Restrictions on atomic write I/O functionality
      4.  
        How the atomic write I/O feature of Storage Foundation helps MySQL databases
      5.  
        VxVM and VxFS exported IOCTLs
      6.  
        Configuring atomic write I/O support for MySQL on VxVM raw volumes
      7.  
        Configuring atomic write I/O support for MySQL on VxFS file systems
      8.  
        Dynamically growing the atomic write capable file system
      9.  
        Disabling atomic write I/O support
  5. Section V. Using point-in-time copies
    1. Understanding point-in-time copy methods
      1. About point-in-time copies
        1.  
          Implementing point-in time copy solutions on a primary host
        2.  
          Implementing off-host point-in-time copy solutions
      2.  
        When to use point-in-time copies
      3. About Storage Foundation point-in-time copy technologies
        1. Volume-level snapshots
          1.  
            Persistent FastResync of volume snapshots
          2.  
            Data integrity in volume snapshots
        2.  
          Storage Checkpoints
    2. Backing up and recovering
      1.  
        Storage Foundation and High Availability Solutions backup and recovery methods
      2. Preserving multiple point-in-time copies
        1.  
          Setting up multiple point-in-time copies
        2.  
          Refreshing point-in-time copies
        3.  
          Recovering from logical corruption
        4.  
          Off-host processing using refreshed snapshot images
      3. Online database backups
        1. Making a backup of an online database on the same host
          1.  
            Preparing a full-sized instant snapshot for a backup
          2.  
            Preparing a space-optimized snapshot for a database backup
          3.  
            Backing up a Sybase database on the same host
          4.  
            Resynchronizing a volume
        2. Making an off-host backup of an online database
          1.  
            Making an off-host backup of an online Sybase database
          2.  
            Resynchronizing a volume
      4. Backing up on an off-host cluster file system
        1.  
          Mounting a file system for shared access
        2.  
          Preparing a snapshot of a mounted file system with shared access
        3.  
          Backing up a snapshot of a mounted file system with shared access
        4.  
          Resynchronizing a volume from its snapshot volume
        5.  
          Reattaching snapshot plexes
      5. Database recovery using Storage Checkpoints
        1.  
          Creating Storage Checkpoints
        2.  
          Rolling back a database
    3. Backing up and recovering in a NetBackup environment
      1.  
        About Veritas NetBackup
      2.  
        About using NetBackup for backup and restore for Sybase
      3. Using NetBackup in an SFHA Solutions product environment
        1.  
          Clustering a NetBackup Master Server
        2.  
          Backing up and recovering a VxVM volume using NetBackup
        3.  
          Recovering a VxVM volume using NetBackup
    4. Off-host processing
      1.  
        Veritas InfoScale Storage Foundation off-host processing methods
      2. Using a replica database for decision support
        1. Creating a replica database on the same host
          1.  
            Preparing for the replica database
          2.  
            Creating a replica database
        2. Creating an off-host replica database
          1.  
            Setting up a replica database for off-host decision support
          2.  
            Resynchronizing the data with the primary host
          3.  
            Updating a warm standby Sybase ASE 12.5 database
          4.  
            Reattaching snapshot plexes
      3.  
        What is off-host processing?
      4.  
        About using VVR for off-host processing
    5. Creating and refreshing test environments
      1.  
        About test environments
      2.  
        Creating a test environment
      3.  
        Refreshing a test environment
    6. Creating point-in-time copies of files
      1. Using FileSnaps to create point-in-time copies of files
        1.  
          Using FileSnaps to provision virtual desktops
        2.  
          Using FileSnaps to optimize write intensive applications for virtual machines
        3.  
          Using FileSnaps to create multiple copies of data instantly
  6. Section VI. Maximizing storage utilization
    1. Optimizing storage tiering with SmartTier
      1.  
        About SmartTier
      2.  
        About VxFS multi-volume file systems
      3.  
        About VxVM volume sets
      4.  
        About volume tags
      5.  
        SmartTier use cases for Sybase
      6.  
        Setting up a filesystem for storage tiering with SmartTier
      7.  
        Relocating old archive logs to tier two storage using SmartTier
      8.  
        Relocating inactive tablespaces or segments to tier two storage
      9.  
        Relocating active indexes to premium storage
      10.  
        Relocating all indexes to premium storage
    2. Optimizing storage with Flexible Storage Sharing
      1. About Flexible Storage Sharing
        1.  
          Limitations of Flexible Storage Sharing
      2.  
        About use cases for optimizing storage with Flexible Storage Sharing
      3.  
        Setting up an SFRAC clustered environment with shared nothing storage
      4.  
        Implementing the SmartTier feature with hybrid storage
      5.  
        Configuring a campus cluster without shared storage
  7. Section VII. Migrating data
    1. Understanding data migration
      1.  
        Types of data migration
    2. Offline migration from LVM to VxVM
      1.  
        About migration from LVM
      2.  
        Converting unused LVM physical volumes to VxVM disks
      3. LVM volume group to VxVM disk group conversion
        1.  
          Volume group conversion limitations
        2.  
          Converting LVM volume groups to VxVM disk groups
        3. Examples of second stage failure analysis
          1.  
            Snapshot in the volume group
          2.  
            dm_mirror module not loaded in the kernel
          3.  
            Conversion requires extent movement on an LVM1 volume group
          4.  
            Unrecognized partition in volume group
      4. LVM volume group restoration
        1.  
          Restoring an LVM volume group
    3. Offline conversion of native file system to VxFS
      1.  
        About the offline conversion of native file system to VxFS
      2.  
        Requirements for offline conversion of a native file system to VxFS
      3.  
        Converting the native file system to VxFS
    4. Online migration of a native file system to the VxFS file system
      1.  
        About online migration of a native file system to the VxFS file system
      2.  
        Administrative interface for online migration of a native file system to the VxFS file system
      3.  
        Migrating a native file system to the VxFS file system
      4. Migrating a source file system to the VxFS file system over NFS v4
        1.  
          Restrictions of NFS v4 migration
      5.  
        Backing out an online migration of a native file system to the VxFS file system
      6. VxFS features not available during online migration
        1.  
          Limitations of online migration
    5. Migrating storage arrays
      1.  
        Array migration for storage using Linux
      2.  
        Overview of storage mirroring for migration
      3.  
        Allocating new storage
      4.  
        Initializing the new disk
      5.  
        Checking the current VxVM information
      6.  
        Adding a new disk to the disk group
      7.  
        Mirroring
      8.  
        Monitoring
      9.  
        Mirror completion
      10.  
        Removing old storage
      11.  
        Post-mirroring steps
    6. Migrating data between platforms
      1. Overview of the Cross-Platform Data Sharing (CDS) feature
        1.  
          Shared data across platforms
        2.  
          Disk drive sector size
        3.  
          Block size issues
        4.  
          Operating system data
      2. CDS disk format and disk groups
        1. CDS disk access and format
          1. CDS disk types
            1.  
              Private and public regions
            2.  
              Disk access type auto
            3.  
              Platform block
            4.  
              AIX coexistence label
            5.  
              HP-UX coexistence label
            6.  
              VxVM ID block
          2. About Cross-platform Data Sharing (CDS) disk groups
            1.  
              Device quotas
            2.  
              Minor device numbers
        2.  
          Non-CDS disk groups
        3. Disk group alignment
          1. Alignment values
            1.  
              Dirty region log alignment
          2.  
            Object alignment during volume creation
      3. Setting up your system to use Cross-platform Data Sharing (CDS)
        1. Creating CDS disks from uninitialized disks
          1.  
            Creating CDS disks by using vxdisksetup
          2.  
            Creating CDS disks by using vxdiskadm
        2. Creating CDS disks from initialized VxVM disks
          1.  
            Creating a CDS disk from a disk that is not in a disk group
          2.  
            Creating a CDS disk from a disk that is already in a disk group
        3. Creating CDS disk groups
          1.  
            Creating a CDS disk group by using vxdg init
          2.  
            Creating a CDS disk group by using vxdiskadm
        4.  
          Converting non-CDS disks to CDS disks
        5.  
          Converting a non-CDS disk group to a CDS disk group
        6.  
          Verifying licensing
        7.  
          Defaults files
      4. Maintaining your system
        1. Disk tasks
          1.  
            Changing the default disk format
          2.  
            Restoring CDS disk labels
        2. Disk group tasks
          1.  
            Changing the alignment of a disk group during disk encapsulation
          2.  
            Changing the alignment of a non-CDS disk group
          3.  
            Splitting a CDS disk group
          4.  
            Moving objects between CDS disk groups and non-CDS disk groups
          5.  
            Moving objects between CDS disk groups
          6.  
            Joining disk groups
          7.  
            Changing the default CDS setting for disk group creation
          8.  
            Creating non-CDS disk groups
          9.  
            Upgrading an older version non-CDS disk group
          10.  
            Replacing a disk in a CDS disk group
          11.  
            Setting the maximum number of devices for CDS disk groups
          12.  
            Changing the DRL map and log size
          13.  
            Creating a volume with a DRL log
          14.  
            Setting the DRL map length
        3. Displaying information
          1.  
            Determining the setting of the CDS attribute on a disk group
          2.  
            Displaying the maximum number of devices in a CDS disk group
          3.  
            Displaying map length and map alignment of traditional DRL logs
          4.  
            Displaying the disk group alignment
          5.  
            Displaying the log map length and alignment
          6.  
            Displaying offset and length information in units of 512 bytes
        4.  
          Default activation mode of shared disk groups
        5.  
          Additional considerations when importing CDS disk groups
      5. File system considerations
        1.  
          Considerations about data in the file system
        2.  
          File system migration
        3. Specifying the migration target
          1.  
            Examples of target specifications
        4. Using the fscdsadm command
          1.  
            Checking that the metadata limits are not exceeded
          2. Maintaining the list of target operating systems
            1.  
              Adding an entry to the list of target operating systems
            2.  
              Removing an entry from the list of target operating systems
            3.  
              Removing all entries from the list of target operating systems
            4.  
              Displaying the list of target operating systems
          3.  
            Enforcing the established CDS limits on a file system
          4.  
            Ignoring the established CDS limits on a file system
          5.  
            Validating the operating system targets for a file system
          6.  
            Displaying the CDS status of a file system
        5.  
          Migrating a file system one time
        6. Migrating a file system on an ongoing basis
          1.  
            Stopping ongoing migration
        7.  
          When to convert a file system
        8. Converting the byte order of a file system
          1.  
            Importing and mounting a file system from another system
      6.  
        Alignment value and block size
      7.  
        Migrating a snapshot volume
    7. Migrating from Oracle ASM to Veritas File System
      1.  
        About the migration
      2.  
        Pre-requisites for migration
      3.  
        Preparing to migrate
      4.  
        Migrating Oracle databases from Oracle ASM to VxFS
  8. Section VIII. Veritas InfoScale 4K sector device support solution
    1. Veritas InfoScale 4k sector device support solution
      1.  
        About 4K sector size technology
      2.  
        InfoScale unsupported configurations
      3.  
        Migrating VxFS file system from 512-bytes sector size devices to 4K sector size devices
  9. Section IX. REST API support
    1. Support for configurations and operations using REST APIs
      1.  
        Support for InfoScale operations using REST APIs
      2.  
        Supported operations
      3.  
        Configuring the REST server
      4.  
        Security considerations for REST API management
      5.  
        Authorization of users for performing operations using REST APIs
      6.  
        Reconfiguring the REST server
      7.  
        Configuring HA for the REST server
      8.  
        Accessing the InfoScale REST API documentation
      9.  
        Unconfiguring the REST server
      10.  
        Troubleshooting information
      11.  
        Limitations
  10. Section X. Reference
    1. Appendix A. Veritas AppProtect logs and operation states
      1.  
        Log files
      2.  
        Plan states
    2. Appendix B. Troubleshooting Veritas AppProtect
      1.  
        Troubleshooting Just In Time Availability

Converting a non-CDS disk group to a CDS disk group

To convert a non-CDS disk group to a CDS disk group

  1. If the disk group contains one or more disks that you do not want to convert to CDS disks, use the vxdg move or vxdg split command to move the disks out of the disk group.
  2. The disk group to be converted must have the following characteristics:

    • No dissociated or disabled objects.

    • No sparse plexes.

    • No volumes requiring recovery.

    • No volumes with pending snapshot operations.

    • No objects in an error state.

    To verify whether a non-CDS disk group can be converted to a CDS disk group, type the following command:
    # vxcdsconvert -g diskgroup -A group
  3. If the disk group does not have a CDS-compatible disk group alignment, the objects in the disk group must be relayed out with a CDS-compatible alignment.
  4. If the conversion is not going to performed online (that is, while access to the disk group continues), stop any applications that are accessing the disks.
  5. Type one of the following forms of the CDS conversion utility (vxcdsconvert) to convert a non-CDS disk group to a CDS disk group.
    # vxcdsconvert -g diskgroup [-A] [-d defaults_file] \
      [-o novolstop] alignment [attribute=value] ...
    # vxcdsconvert -g diskgroup [-A] [-d defaults_file] \
      [-o novolstop] group [attribute=value] ...

    The alignment and group keywords have the following effect:

    alignment

    Specifies alignment conversion where disks are not converted, and an object relayout is performed on the disk group. A successful completion results in an 8K-aligned disk group. You might consider this option, rather than converting the entire disk group, if you want to reduce the amount of work to be done for a later full conversion to CDS disk group.

    group

    Specifies group conversion of all non-CDS disks in the disk group before relaying out objects in the disk group.

    The conversion involves evacuating objects from the disk, reinitializing the disk, and relocating objects back to disk. You can specify the -o novolstop option to perform the conversion online (that is, while access to the disk group continues). If the -o novolstop option is not specified, stop any applications that are accessing the disks, and perform the conversion offline.

    Warning:

    Specifying the -o novolstop option can greatly increase the amount of time that is required to perform conversion.

    Conversion has the following side effects:

    • Non-CDS disk group are upgraded by using the vxdg upgrade command. If the disk group was originally created by the conversion of an LVM volume group (VG), rolling back to the original LVM VG is not possible. If you decide to go through with the conversion, the rollback records for the disk group will be removed, so that an accidental rollback to an LVM VG cannot be done.

    • Stopped, but startable volumes, are started for the duration of the conversion .

    • Any volumes or other objects in the disk group that were created with the layout=diskalign attribute specified can no longer be disk aligned.

    • Encapsulated disks may lose the ability to be unencapsulated.

    • Performance may be degraded because data may have migrated to different regions of a disk, or to different disks.

    In the following example, the disk group, mydg, and all its disks are converted to CDS while keeping its volumes still online:

    # vxcdsconvert -g mydg -o novolstop group \
      move_subdisks_ok=yes evac_subdisks_ok=yes \
      evac_disk_list=disk11,disk12,disk13,disk14

    The evac_disk_list attribute specifies a list of disks (disk11 through disk14) to which subdisks can be evacuated to disks by setting the evac_subdisks_ok option to yes.

    Before you use the vxcdsconvert command, make sure you understand its options, attributes, and keywords.

    See the vxcdsconvert(1M) manual page.