InfoScale™ 9.0 Solutions Guide - Linux

Last Published:
Product(s): InfoScale & Storage Foundation (9.0)
Platform: Linux
  1. Section I. Introducing Veritas InfoScale
    1. Introducing Veritas InfoScale
      1.  
        About the Arctera InfoScale product suite
      2.  
        Components of the Arctera InfoScale product suite
  2. Section II. Solutions for Veritas InfoScale products
    1. Solutions for Veritas InfoScale products
      1.  
        Use cases for Veritas InfoScale products
      2.  
        Feature support across Veritas InfoScale 9.0 products
      3.  
        Using SmartMove and Thin Provisioning with Sybase databases
      4.  
        Running multiple parallel applications within a single cluster using the application isolation feature
      5.  
        Scaling FSS storage capacity with dedicated storage nodes using application isolation feature
      6.  
        Finding Veritas InfoScale product use cases information
  3. Section III. Stack-level migration to IPv6 or dual stack
    1. Stack-level migration to IPv6 or dual stack
      1.  
        Migrating Veritas InfoScale products to support IPv6/dual-stack
  4. Section IV. Improving database performance
    1. Overview of database accelerators
      1.  
        About Arctera InfoScale™ product components database accelerators
    2. Improving database performance with Veritas Concurrent I/O
      1. About Concurrent I/O
        1.  
          How Concurrent I/O works
      2. Tasks for enabling and disabling Concurrent I/O
        1.  
          Enabling Concurrent I/O for Sybase
        2.  
          Disabling Concurrent I/O for Sybase
    3. Improving database performance with atomic write I/O
      1.  
        About the atomic write I/O
      2.  
        Requirements for atomic write I/O
      3.  
        Restrictions on atomic write I/O functionality
      4.  
        How the atomic write I/O feature of Storage Foundation helps MySQL databases
      5.  
        VxVM and VxFS exported IOCTLs
      6.  
        Configuring atomic write I/O support for MySQL on VxVM raw volumes
      7.  
        Configuring atomic write I/O support for MySQL on VxFS file systems
      8.  
        Dynamically growing the atomic write capable file system
      9.  
        Disabling atomic write I/O support
  5. Section V. Using point-in-time copies
    1. Understanding point-in-time copy methods
      1. About point-in-time copies
        1.  
          Implementing point-in time copy solutions on a primary host
        2.  
          Implementing off-host point-in-time copy solutions
      2.  
        When to use point-in-time copies
      3. About Storage Foundation point-in-time copy technologies
        1. Volume-level snapshots
          1.  
            Persistent FastResync of volume snapshots
          2.  
            Data integrity in volume snapshots
        2.  
          Storage Checkpoints
    2. Backing up and recovering
      1.  
        Storage Foundation and High Availability Solutions backup and recovery methods
      2. Preserving multiple point-in-time copies
        1.  
          Setting up multiple point-in-time copies
        2.  
          Refreshing point-in-time copies
        3.  
          Recovering from logical corruption
        4.  
          Off-host processing using refreshed snapshot images
      3. Online database backups
        1. Making a backup of an online database on the same host
          1.  
            Preparing a full-sized instant snapshot for a backup
          2.  
            Preparing a space-optimized snapshot for a database backup
          3.  
            Backing up a Sybase database on the same host
          4.  
            Resynchronizing a volume
        2. Making an off-host backup of an online database
          1.  
            Making an off-host backup of an online Sybase database
          2.  
            Resynchronizing a volume
      4. Backing up on an off-host cluster file system
        1.  
          Mounting a file system for shared access
        2.  
          Preparing a snapshot of a mounted file system with shared access
        3.  
          Backing up a snapshot of a mounted file system with shared access
        4.  
          Resynchronizing a volume from its snapshot volume
        5.  
          Reattaching snapshot plexes
      5. Database recovery using Storage Checkpoints
        1.  
          Creating Storage Checkpoints
        2.  
          Rolling back a database
    3. Backing up and recovering in a NetBackup environment
      1.  
        About Veritas NetBackup
      2.  
        About using NetBackup for backup and restore for Sybase
      3. Using NetBackup in an SFHA Solutions product environment
        1.  
          Clustering a NetBackup Master Server
        2.  
          Backing up and recovering a VxVM volume using NetBackup
        3.  
          Recovering a VxVM volume using NetBackup
    4. Off-host processing
      1.  
        Veritas InfoScale Storage Foundation off-host processing methods
      2. Using a replica database for decision support
        1. Creating a replica database on the same host
          1.  
            Preparing for the replica database
          2.  
            Creating a replica database
        2. Creating an off-host replica database
          1.  
            Setting up a replica database for off-host decision support
          2.  
            Resynchronizing the data with the primary host
          3.  
            Updating a warm standby Sybase ASE 12.5 database
          4.  
            Reattaching snapshot plexes
      3.  
        What is off-host processing?
      4.  
        About using VVR for off-host processing
    5. Creating and refreshing test environments
      1.  
        About test environments
      2.  
        Creating a test environment
      3.  
        Refreshing a test environment
    6. Creating point-in-time copies of files
      1. Using FileSnaps to create point-in-time copies of files
        1.  
          Using FileSnaps to provision virtual desktops
        2.  
          Using FileSnaps to optimize write intensive applications for virtual machines
        3.  
          Using FileSnaps to create multiple copies of data instantly
  6. Section VI. Maximizing storage utilization
    1. Optimizing storage tiering with SmartTier
      1.  
        About SmartTier
      2.  
        About VxFS multi-volume file systems
      3.  
        About VxVM volume sets
      4.  
        About volume tags
      5.  
        SmartTier use cases for Sybase
      6.  
        Setting up a filesystem for storage tiering with SmartTier
      7.  
        Relocating old archive logs to tier two storage using SmartTier
      8.  
        Relocating inactive tablespaces or segments to tier two storage
      9.  
        Relocating active indexes to premium storage
      10.  
        Relocating all indexes to premium storage
    2. Optimizing storage with Flexible Storage Sharing
      1. About Flexible Storage Sharing
        1.  
          Limitations of Flexible Storage Sharing
      2.  
        About use cases for optimizing storage with Flexible Storage Sharing
      3.  
        Setting up an SFRAC clustered environment with shared nothing storage
      4.  
        Implementing the SmartTier feature with hybrid storage
      5.  
        Configuring a campus cluster without shared storage
  7. Section VII. Migrating data
    1. Understanding data migration
      1.  
        Types of data migration
    2. Offline migration from LVM to VxVM
      1.  
        About migration from LVM
      2.  
        Converting unused LVM physical volumes to VxVM disks
      3. LVM volume group to VxVM disk group conversion
        1.  
          Volume group conversion limitations
        2.  
          Converting LVM volume groups to VxVM disk groups
        3. Examples of second stage failure analysis
          1.  
            Snapshot in the volume group
          2.  
            dm_mirror module not loaded in the kernel
          3.  
            Conversion requires extent movement on an LVM1 volume group
          4.  
            Unrecognized partition in volume group
      4. LVM volume group restoration
        1.  
          Restoring an LVM volume group
    3. Offline conversion of native file system to VxFS
      1.  
        About the offline conversion of native file system to VxFS
      2.  
        Requirements for offline conversion of a native file system to VxFS
      3.  
        Converting the native file system to VxFS
    4. Online migration of a native file system to the VxFS file system
      1.  
        About online migration of a native file system to the VxFS file system
      2.  
        Administrative interface for online migration of a native file system to the VxFS file system
      3.  
        Migrating a native file system to the VxFS file system
      4. Migrating a source file system to the VxFS file system over NFS v4
        1.  
          Restrictions of NFS v4 migration
      5.  
        Backing out an online migration of a native file system to the VxFS file system
      6. VxFS features not available during online migration
        1.  
          Limitations of online migration
    5. Migrating storage arrays
      1.  
        Array migration for storage using Linux
      2.  
        Overview of storage mirroring for migration
      3.  
        Allocating new storage
      4.  
        Initializing the new disk
      5.  
        Checking the current VxVM information
      6.  
        Adding a new disk to the disk group
      7.  
        Mirroring
      8.  
        Monitoring
      9.  
        Mirror completion
      10.  
        Removing old storage
      11.  
        Post-mirroring steps
    6. Migrating data between platforms
      1. Overview of the Cross-Platform Data Sharing (CDS) feature
        1.  
          Shared data across platforms
        2.  
          Disk drive sector size
        3.  
          Block size issues
        4.  
          Operating system data
      2. CDS disk format and disk groups
        1. CDS disk access and format
          1. CDS disk types
            1.  
              Private and public regions
            2.  
              Disk access type auto
            3.  
              Platform block
            4.  
              AIX coexistence label
            5.  
              HP-UX coexistence label
            6.  
              VxVM ID block
          2. About Cross-platform Data Sharing (CDS) disk groups
            1.  
              Device quotas
            2.  
              Minor device numbers
        2.  
          Non-CDS disk groups
        3. Disk group alignment
          1. Alignment values
            1.  
              Dirty region log alignment
          2.  
            Object alignment during volume creation
      3. Setting up your system to use Cross-platform Data Sharing (CDS)
        1. Creating CDS disks from uninitialized disks
          1.  
            Creating CDS disks by using vxdisksetup
          2.  
            Creating CDS disks by using vxdiskadm
        2. Creating CDS disks from initialized VxVM disks
          1.  
            Creating a CDS disk from a disk that is not in a disk group
          2.  
            Creating a CDS disk from a disk that is already in a disk group
        3. Creating CDS disk groups
          1.  
            Creating a CDS disk group by using vxdg init
          2.  
            Creating a CDS disk group by using vxdiskadm
        4.  
          Converting non-CDS disks to CDS disks
        5.  
          Converting a non-CDS disk group to a CDS disk group
        6.  
          Verifying licensing
        7.  
          Defaults files
      4. Maintaining your system
        1. Disk tasks
          1.  
            Changing the default disk format
          2.  
            Restoring CDS disk labels
        2. Disk group tasks
          1.  
            Changing the alignment of a disk group during disk encapsulation
          2.  
            Changing the alignment of a non-CDS disk group
          3.  
            Splitting a CDS disk group
          4.  
            Moving objects between CDS disk groups and non-CDS disk groups
          5.  
            Moving objects between CDS disk groups
          6.  
            Joining disk groups
          7.  
            Changing the default CDS setting for disk group creation
          8.  
            Creating non-CDS disk groups
          9.  
            Upgrading an older version non-CDS disk group
          10.  
            Replacing a disk in a CDS disk group
          11.  
            Setting the maximum number of devices for CDS disk groups
          12.  
            Changing the DRL map and log size
          13.  
            Creating a volume with a DRL log
          14.  
            Setting the DRL map length
        3. Displaying information
          1.  
            Determining the setting of the CDS attribute on a disk group
          2.  
            Displaying the maximum number of devices in a CDS disk group
          3.  
            Displaying map length and map alignment of traditional DRL logs
          4.  
            Displaying the disk group alignment
          5.  
            Displaying the log map length and alignment
          6.  
            Displaying offset and length information in units of 512 bytes
        4.  
          Default activation mode of shared disk groups
        5.  
          Additional considerations when importing CDS disk groups
      5. File system considerations
        1.  
          Considerations about data in the file system
        2.  
          File system migration
        3. Specifying the migration target
          1.  
            Examples of target specifications
        4. Using the fscdsadm command
          1.  
            Checking that the metadata limits are not exceeded
          2. Maintaining the list of target operating systems
            1.  
              Adding an entry to the list of target operating systems
            2.  
              Removing an entry from the list of target operating systems
            3.  
              Removing all entries from the list of target operating systems
            4.  
              Displaying the list of target operating systems
          3.  
            Enforcing the established CDS limits on a file system
          4.  
            Ignoring the established CDS limits on a file system
          5.  
            Validating the operating system targets for a file system
          6.  
            Displaying the CDS status of a file system
        5.  
          Migrating a file system one time
        6. Migrating a file system on an ongoing basis
          1.  
            Stopping ongoing migration
        7.  
          When to convert a file system
        8. Converting the byte order of a file system
          1.  
            Importing and mounting a file system from another system
      6.  
        Alignment value and block size
      7.  
        Migrating a snapshot volume
    7. Migrating from Oracle ASM to Veritas File System
      1.  
        About the migration
      2.  
        Pre-requisites for migration
      3.  
        Preparing to migrate
      4.  
        Migrating Oracle databases from Oracle ASM to VxFS
  8. Section VIII. Veritas InfoScale 4K sector device support solution
    1. Veritas InfoScale 4k sector device support solution
      1.  
        About 4K sector size technology
      2.  
        InfoScale unsupported configurations
      3.  
        Migrating VxFS file system from 512-bytes sector size devices to 4K sector size devices
  9. Section IX. REST API support
    1. Support for configurations and operations using REST APIs
      1.  
        Support for InfoScale operations using REST APIs
      2.  
        Supported operations
      3.  
        Configuring the REST server
      4.  
        Security considerations for REST API management
      5.  
        Authorization of users for performing operations using REST APIs
      6.  
        Reconfiguring the REST server
      7.  
        Configuring HA for the REST server
      8.  
        Accessing the InfoScale REST API documentation
      9.  
        Unconfiguring the REST server
      10.  
        Troubleshooting information
      11.  
        Limitations
  10. Section X. Reference
    1. Appendix A. Veritas AppProtect logs and operation states
      1.  
        Log files
      2.  
        Plan states
    2. Appendix B. Troubleshooting Veritas AppProtect
      1.  
        Troubleshooting Just In Time Availability

Use cases for Veritas InfoScale products

Veritas InfoScale Storage Foundation and High Availability (SFHA) Solutions product components and features can be used individually and in concert to improve performance, resilience and ease of management for your storage and applications. This guide documents key use cases for the management features of SFHA Solutions products.

Note:

The commands used for the Red Hat Enterprise Linux (RHEL) operating system in this document also apply to supported RHEL-compatible distributions.

Table: Key use cases for SFHA Solutions products

Use case

Veritas InfoScale feature

Improve database performance using SFHA Solutions database accelerators to enable your database to achieve the speed of raw disk while retaining the management features and convenience of a file system.

See About Arctera InfoScale™ product components database accelerators.

Concurrent I/O

See About Concurrent I/O.

Veritas Extension for Oracle Disk Manager

Veritas Extension for Cached Oracle Disk Manager

Note:

For ODM amd Cached ODM information, see Storage Foundation: Storage and Availability Managment for Oracle Databases.

Protect your data using SFHA Solutions Flashsnap, Storage Checkpoints, and NetBackup point-in-time copy methods to back up and recover your data.

See Storage Foundation and High Availability Solutions backup and recovery methods.

See About point-in-time copies.

FlashSnap

See Preserving multiple point-in-time copies.

See Online database backups.

See Backing up on an off-host cluster file system.

See Storage Foundation and High Availability Solutions backup and recovery methods.

Storage Checkpoints

See Database recovery using Storage Checkpoints.

NetBackup with SFHA Solutions

See About Veritas NetBackup.

Process your data off-host to avoid performance loss to your production hosts by using SFHA Solutions volume snapshots.

See Veritas InfoScale Storage Foundation off-host processing methods.

FlashSnap

See Using a replica database for decision support.

Optimize copies of your production database for test, decision modeling, and development purposes by using SFHA Solutions point-in-time copy methods.

See About test environments.

FlashSnap

See Creating a test environment.

Make file level point-in-time snapshots using SFHA Solutions space-optimized FileSnap when you need finer granualarity for your point-in-time copies than file systems or volumes. You can use FileSnap for cloning virtual machines.

See Using FileSnaps to create point-in-time copies of files.

FileSnap

See Using FileSnaps to provision virtual desktops.

Maximize your storage utilization using SFHA Solutions SmartTier to move data to storage tiers based on age, priority, and access rate criteria.

See About SmartTier.

SmartTier

See Setting up a filesystem for storage tiering with SmartTier.

Maximize storage utilization for data redundancy, high availability, and disaster recovery, without physically shared storage.

See About Flexible Storage Sharing.

Flexible Storage Sharing

See Setting up an SFRAC clustered environment with shared nothing storage.

See Implementing the SmartTier feature with hybrid storage.

See Configuring a campus cluster without shared storage.

Improve your data efficiency on solid state drives (SSDs) through I/O caching using advanced, customizable hueristics to determine which data to cache and how that data gets removed from the cache.

SmartIO read caching for applications running on VxVM volumes

SmartIO read caching for applications running on VxFS file systems

SmartIO write caching for applications running on VxFS file systems

SmartIO caching for databases on VxFS file systems

SmartIO caching for databases on VxVM volumes

SmartIO write-back caching for databases is not supported on SFRAC

See the Veritas InfoScale 9.0 SmartIO for Solid-State Drives Solutions Guide.

Convert your data from native OS file system and volumes to VxFS and VxVM using SFHA Solutions conversion utilities.

See Types of data migration.

Offline conversion utility

See Types of data migration.

Online migration utility

Convert your data from raw disk to VxFS: use SFHA Solutions.

Offline conversion utility

Migrate your data from one platform to another (server migration) using SFHA Solutions.

Portable Data Containers

Migrate your data across arrays using SFHA Solutions Portable Data Containers.

Volume mirroring

Plan a maintenance of virtual machines in a vSphere environment for a planned failover and recovery of application during unplanned failure using the Just In Time Availability solution.

Just In Time Availability solution

Improve the native and optimized format of your storage devices using the Veritas InfoScale solution which provides support with the advanced format or 4K (4096 bytes) sector devices (formatted with 4KB) in storage environments.

Veritas InfoScale 4K sector device support solution

See About 4K sector size technology.

See InfoScale unsupported configurations.

See Migrating VxFS file system from 512-bytes sector size devices to 4K sector size devices.

Multiple parallel applications in a data warehouse that require flexible sharing of data such as ETL pipeline, where output of one stage becomes input for the next stage. (for example, accounting system needs to combine data from different applications such as sales, payroll and purchasing)

Verita InfoScale application isolation

See Running multiple parallel applications within a single cluster using the application isolation feature.

More information:

Application isolation in CVM environments with disk group sub-clustering

Enabling the application isolation feature in CVM environments

Disabling the application isolation feature in a CVM cluster

Setting the sub-cluster node preference value for master failover

Changing the disk group master manually

For information, see the Storage Foundation Cluster File System High Availability Administrator's Guide.

Relax complete zoning requirement of SAN storage to all CVM nodes. This enables merging of independent clusters for better manageability.

Verita InfoScale application isolation

See Running multiple parallel applications within a single cluster using the application isolation feature.

More information:

Application isolation in CVM environments with disk group sub-clustering

Enabling the application isolation feature in CVM environments

Disabling the application isolation feature in a CVM cluster

Setting the sub-cluster node preference value for master failover

Changing the disk group master manually

For information, see the Storage Foundation Cluster File System High Availability Administrator's Guide.

Enabling multiple independent clustered applications to use a commonly shared pool of scalable DAS storage. This facilitates adding of storage-only nodes to cluster for growing storage capacity and compute nodes for dedicated application use.

Verita InfoScale application isolation

See Scaling FSS storage capacity with dedicated storage nodes using application isolation feature.

More information:

Application isolation in CVM environments with disk group sub-clustering

Enabling the application isolation feature in CVM environments

Disabling the application isolation feature in a CVM cluster

Setting the sub-cluster node preference value for master failover

Changing the disk group master manually

For information, see the Storage Foundation Cluster File System High Availability Administrator's Guide.