Cluster Server 7.4.1 Administrator's Guide - Linux
- Section I. Clustering concepts and terminology
- Introducing Cluster Server
- About Cluster Server
- About cluster control guidelines
- About the physical components of VCS
- Logical components of VCS
- Types of service groups
- About resource monitoring
- Agent classifications
- About cluster control, communications, and membership
- About security services
- Components for administering VCS
- About cluster topologies
- VCS configuration concepts
- Introducing Cluster Server
- Section II. Administration - Putting VCS to work
- About the VCS user privilege model
- Administering the cluster from the command line
- About administering VCS from the command line
- About installing a VCS license
- Administering LLT
- Starting VCS
- Stopping the VCS engine and related processes
- Logging on to VCS
- About managing VCS configuration files
- About managing VCS users from the command line
- About querying VCS
- About administering service groups
- Modifying service group attributes
- About administering resources
- Enabling and disabling IMF for agents by using script
- Linking and unlinking resources
- About administering resource types
- About administering clusters
- Configuring applications and resources in VCS
- VCS bundled agents for UNIX
- Configuring NFS service groups
- About NFS
- Configuring NFS service groups
- Sample configurations
- About configuring the RemoteGroup agent
- About configuring Samba service groups
- About testing resource failover by using HA fire drills
- Predicting VCS behavior using VCS Simulator
- Section III. VCS communication and operations
- About communications, membership, and data protection in the cluster
- About cluster communications
- About cluster membership
- About membership arbitration
- About membership arbitration components
- About server-based I/O fencing
- About majority-based fencing
- About the CP server service group
- About secure communication between the VCS cluster and CP server
- About data protection
- Examples of VCS operation with I/O fencing
- About cluster membership and data protection without I/O fencing
- Examples of VCS operation without I/O fencing
- Administering I/O fencing
- About the vxfentsthdw utility
- Testing the coordinator disk group using the -c option of vxfentsthdw
- About the vxfenadm utility
- About the vxfenclearpre utility
- About the vxfenswap utility
- About administering the coordination point server
- About configuring a CP server to support IPv6 or dual stack
- About migrating between disk-based and server-based fencing configurations
- Migrating between fencing configurations using response files
- Controlling VCS behavior
- VCS behavior on resource faults
- About controlling VCS behavior at the service group level
- About AdaptiveHA
- Customized behavior diagrams
- About preventing concurrency violation
- VCS behavior for resources that support the intentional offline functionality
- VCS behavior when a service group is restarted
- About controlling VCS behavior at the resource level
- VCS behavior on loss of storage connectivity
- Service group workload management
- Sample configurations depicting workload management
- The role of service group dependencies
- About communications, membership, and data protection in the cluster
- Section IV. Administration - Beyond the basics
- VCS event notification
- VCS event triggers
- Using event triggers
- List of event triggers
- Virtual Business Services
- Section V. Veritas High Availability Configuration wizard
- Introducing the Veritas High Availability Configuration wizard
- Administering application monitoring from the Veritas High Availability view
- Administering application monitoring from the Veritas High Availability view
- Administering application monitoring from the Veritas High Availability view
- Section VI. Cluster configurations for disaster recovery
- Connecting clusters–Creating global clusters
- VCS global clusters: The building blocks
- About global cluster management
- About serialization - The Authority attribute
- Prerequisites for global clusters
- Setting up a global cluster
- About IPv6 support with global clusters
- About cluster faults
- About setting up a disaster recovery fire drill
- Test scenario for a multi-tiered environment
- Administering global clusters from the command line
- About global querying in a global cluster setup
- Administering clusters in global cluster setup
- Setting up replicated data clusters
- Setting up campus clusters
- Connecting clusters–Creating global clusters
- Section VII. Troubleshooting and performance
- VCS performance considerations
- How cluster components affect performance
- How cluster operations affect performance
- VCS performance consideration when a system panics
- About scheduling class and priority configuration
- VCS agent statistics
- About VCS tunable parameters
- Troubleshooting and recovery for VCS
- VCS message logging
- Gathering VCS information for support analysis
- Troubleshooting the VCS engine
- Troubleshooting Low Latency Transport (LLT)
- Troubleshooting Group Membership Services/Atomic Broadcast (GAB)
- Troubleshooting VCS startup
- Troubleshooting issues with systemd unit service files
- Troubleshooting service groups
- Troubleshooting resources
- Troubleshooting sites
- Troubleshooting I/O fencing
- Fencing startup reports preexisting split-brain
- Troubleshooting CP server
- Troubleshooting server-based fencing on the VCS cluster nodes
- Issues during online migration of coordination points
- Troubleshooting notification
- Troubleshooting and recovery for global clusters
- Troubleshooting licensing
- Licensing error messages
- Troubleshooting secure configurations
- Troubleshooting wizard-based configuration issues
- Troubleshooting issues with the Veritas High Availability view
- VCS message logging
- VCS performance considerations
- Section VIII. Appendixes
System states
Whenever the VCS engine is running on a system, it is in one of the states described in the table below. States indicate a system's current mode of operation. When the engine is started on a new system, it identifies the other systems available in the cluster and their states of operation. If a cluster system is in the state of RUNNING, the new system retrieves the configuration information from that system. Changes made to the configuration while it is being retrieved are applied to the new system before it enters the RUNNING state.
If no other systems are up and in the state of RUNNING or ADMIN_WAIT, and the new system has a configuration that is not invalid, the engine transitions to the state LOCAL_BUILD, and builds the configuration from disk. If the configuration is invalid, the system transitions to the state of STALE_ADMIN_WAIT.
Table: VCS system states provides a list of VCS system states and their descriptions.
Table: VCS system states
State | Definition |
---|---|
ADMIN_WAIT | The running configuration was lost. A system transitions into this state for the following reasons:
|
CURRENT_DISCOVER_WAIT | The system has joined the cluster and its configuration file is valid. The system is waiting for information from other systems before it determines how to transition to another state. |
CURRENT_PEER_WAIT | The system has a valid configuration file and another system is doing a build from disk (LOCAL_BUILD). When its peer finishes the build, this system transitions to the state REMOTE_BUILD. |
EXITING | The system is leaving the cluster. |
EXITED | The system has left the cluster. |
EXITING_FORCIBLY | An hastop -force command has forced the system to leave the cluster. |
FAULTED | The system has left the cluster unexpectedly. |
INITING | The system has joined the cluster. This is the initial state for all systems. |
LEAVING | The system is leaving the cluster gracefully. When the agents have been stopped, and when the current configuration is written to disk, the system transitions to EXITING. |
LOCAL_BUILD | The system is building the running configuration from the disk configuration. |
REMOTE_BUILD | The system is building a running configuration that it obtained from a peer in a RUNNING state. |
RUNNING | The system is an active member of the cluster. |
STALE_ADMIN_WAIT | The system has an invalid configuration and there is no other system in the state of RUNNING from which to retrieve a configuration. If a system with a valid configuration is started, that system enters the LOCAL_BUILD state. Systems in STALE_ADMIN_WAIT transition to STALE_PEER_WAIT. |
STALE_DISCOVER_WAIT | The system has joined the cluster with an invalid configuration file. It is waiting for information from any of its peers before determining how to transition to another state. |
STALE_PEER_WAIT | The system has an invalid configuration file and another system is doing a build from disk (LOCAL_BUILD). When its peer finishes the build, this system transitions to the state REMOTE_BUILD. |
UNKNOWN | The system has not joined the cluster because it does not have a system entry in the configuration. |
More Information