Cluster Server 7.4.1 Administrator's Guide - Linux
- Section I. Clustering concepts and terminology
- Introducing Cluster Server
- About Cluster Server
- About cluster control guidelines
- About the physical components of VCS
- Logical components of VCS
- Types of service groups
- About resource monitoring
- Agent classifications
- About cluster control, communications, and membership
- About security services
- Components for administering VCS
- About cluster topologies
- VCS configuration concepts
- Introducing Cluster Server
- Section II. Administration - Putting VCS to work
- About the VCS user privilege model
- Administering the cluster from the command line
- About administering VCS from the command line
- About installing a VCS license
- Administering LLT
- Starting VCS
- Stopping the VCS engine and related processes
- Logging on to VCS
- About managing VCS configuration files
- About managing VCS users from the command line
- About querying VCS
- About administering service groups
- Modifying service group attributes
- About administering resources
- Enabling and disabling IMF for agents by using script
- Linking and unlinking resources
- About administering resource types
- About administering clusters
- Configuring applications and resources in VCS
- VCS bundled agents for UNIX
- Configuring NFS service groups
- About NFS
- Configuring NFS service groups
- Sample configurations
- About configuring the RemoteGroup agent
- About configuring Samba service groups
- About testing resource failover by using HA fire drills
- Predicting VCS behavior using VCS Simulator
- Section III. VCS communication and operations
- About communications, membership, and data protection in the cluster
- About cluster communications
- About cluster membership
- About membership arbitration
- About membership arbitration components
- About server-based I/O fencing
- About majority-based fencing
- About the CP server service group
- About secure communication between the VCS cluster and CP server
- About data protection
- Examples of VCS operation with I/O fencing
- About cluster membership and data protection without I/O fencing
- Examples of VCS operation without I/O fencing
- Administering I/O fencing
- About the vxfentsthdw utility
- Testing the coordinator disk group using the -c option of vxfentsthdw
- About the vxfenadm utility
- About the vxfenclearpre utility
- About the vxfenswap utility
- About administering the coordination point server
- About configuring a CP server to support IPv6 or dual stack
- About migrating between disk-based and server-based fencing configurations
- Migrating between fencing configurations using response files
- Controlling VCS behavior
- VCS behavior on resource faults
- About controlling VCS behavior at the service group level
- About AdaptiveHA
- Customized behavior diagrams
- About preventing concurrency violation
- VCS behavior for resources that support the intentional offline functionality
- VCS behavior when a service group is restarted
- About controlling VCS behavior at the resource level
- VCS behavior on loss of storage connectivity
- Service group workload management
- Sample configurations depicting workload management
- The role of service group dependencies
- About communications, membership, and data protection in the cluster
- Section IV. Administration - Beyond the basics
- VCS event notification
- VCS event triggers
- Using event triggers
- List of event triggers
- Virtual Business Services
- Section V. Veritas High Availability Configuration wizard
- Introducing the Veritas High Availability Configuration wizard
- Administering application monitoring from the Veritas High Availability view
- Administering application monitoring from the Veritas High Availability view
- Administering application monitoring from the Veritas High Availability view
- Section VI. Cluster configurations for disaster recovery
- Connecting clusters–Creating global clusters
- VCS global clusters: The building blocks
- About global cluster management
- About serialization - The Authority attribute
- Prerequisites for global clusters
- Setting up a global cluster
- About IPv6 support with global clusters
- About cluster faults
- About setting up a disaster recovery fire drill
- Test scenario for a multi-tiered environment
- Administering global clusters from the command line
- About global querying in a global cluster setup
- Administering clusters in global cluster setup
- Setting up replicated data clusters
- Setting up campus clusters
- Connecting clusters–Creating global clusters
- Section VII. Troubleshooting and performance
- VCS performance considerations
- How cluster components affect performance
- How cluster operations affect performance
- VCS performance consideration when a system panics
- About scheduling class and priority configuration
- VCS agent statistics
- About VCS tunable parameters
- Troubleshooting and recovery for VCS
- VCS message logging
- Gathering VCS information for support analysis
- Troubleshooting the VCS engine
- Troubleshooting Low Latency Transport (LLT)
- Troubleshooting Group Membership Services/Atomic Broadcast (GAB)
- Troubleshooting VCS startup
- Troubleshooting issues with systemd unit service files
- Troubleshooting service groups
- Troubleshooting resources
- Troubleshooting sites
- Troubleshooting I/O fencing
- Fencing startup reports preexisting split-brain
- Troubleshooting CP server
- Troubleshooting server-based fencing on the VCS cluster nodes
- Issues during online migration of coordination points
- Troubleshooting notification
- Troubleshooting and recovery for global clusters
- Troubleshooting licensing
- Licensing error messages
- Troubleshooting secure configurations
- Troubleshooting wizard-based configuration issues
- Troubleshooting issues with the Veritas High Availability view
- VCS message logging
- VCS performance considerations
- Section VIII. Appendixes
Enabling or preventing resources to start outside VCS control
When a resource is brought online on one node in a cluster, the resource must not be allowed to come online outside VCS control on any other node in the cluster. By ensuring that the resource cannot be online on more than one node, you can prevent data corruption and ensure high availability through VCS.
The ProPCV attribute of the service group containing application resource determines whether or not to allow the processes for the application resource to start outside VCS control. The application type resource must be registered with IMF for offline monitoring or online monitoring. ProPCV applies only to the processes that are specified in the MonitorProcesses attribute or the StartProgram attribute of the application type resource. See the Cluster Server Bundled Agents Reference Guide for information about the propcv action agent function and also for information on when the application resource can be registered with IMF for offline monitoring.
Note:
Currently, ProPCV works for application type resources only.
In situations where the propcv action agent function times out, you can use the amfregister command to manually mark a resource as one of the following:
A resource that is allowed to be brought online outside VCS control.
A resource that is prevented from being brought online outside VCS control. Such a ProPCV-enabled resource cannot be online on more than one node in the cluster.
To allow a resource to be started outside VCS control
- Type the following command:
amfregister -r reapername -g resourcename -P a
Example: amfregister -r VCSApplicationAgent -g app1 -P a
The application resource app1 is allowed to start if you invoke it outside VCS control or from the command line.
To prevent a resource from being started outside VCS control
- Type the following command:
amfregister -r reapername ‐g resourcename ‐P p
Example: amfregister -r VCSApplicationAgent -g app1 -P p
The application resource app1 is prevented from starting if you invoke it outside VCS control or from the command line.
In the preceding examples,
reapername is the agent whose name is displayed under the Registered Reapers section of amfstat output. For application resources, reapername is VCSApplicationAgent.
Option r indicates the name of the reaper or agent as displayed under the Registered Reapers section of the amfstat command's output. For application resources, reaper name is VCSApplicationAgent.
resourcename is the resource name.
Option g indicates the name of the resource. In the preceding example, the application resource is app1.
Option P indicates whether to allow or prevent a resource from starting up outside VCS control.
Argument a denotes that the resource can be started outside VCS control.
Argument p denotes that the resource is prevented from starting outside VCS control.