Cluster Server 7.4.1 Administrator's Guide - Linux
- Section I. Clustering concepts and terminology
- Introducing Cluster Server
- About Cluster Server
- About cluster control guidelines
- About the physical components of VCS
- Logical components of VCS
- Types of service groups
- About resource monitoring
- Agent classifications
- About cluster control, communications, and membership
- About security services
- Components for administering VCS
- About cluster topologies
- VCS configuration concepts
- Introducing Cluster Server
- Section II. Administration - Putting VCS to work
- About the VCS user privilege model
- Administering the cluster from the command line
- About administering VCS from the command line
- About installing a VCS license
- Administering LLT
- Starting VCS
- Stopping the VCS engine and related processes
- Logging on to VCS
- About managing VCS configuration files
- About managing VCS users from the command line
- About querying VCS
- About administering service groups
- Modifying service group attributes
- About administering resources
- Enabling and disabling IMF for agents by using script
- Linking and unlinking resources
- About administering resource types
- About administering clusters
- Configuring applications and resources in VCS
- VCS bundled agents for UNIX
- Configuring NFS service groups
- About NFS
- Configuring NFS service groups
- Sample configurations
- About configuring the RemoteGroup agent
- About configuring Samba service groups
- About testing resource failover by using HA fire drills
- Predicting VCS behavior using VCS Simulator
- Section III. VCS communication and operations
- About communications, membership, and data protection in the cluster
- About cluster communications
- About cluster membership
- About membership arbitration
- About membership arbitration components
- About server-based I/O fencing
- About majority-based fencing
- About the CP server service group
- About secure communication between the VCS cluster and CP server
- About data protection
- Examples of VCS operation with I/O fencing
- About cluster membership and data protection without I/O fencing
- Examples of VCS operation without I/O fencing
- Administering I/O fencing
- About the vxfentsthdw utility
- Testing the coordinator disk group using the -c option of vxfentsthdw
- About the vxfenadm utility
- About the vxfenclearpre utility
- About the vxfenswap utility
- About administering the coordination point server
- About configuring a CP server to support IPv6 or dual stack
- About migrating between disk-based and server-based fencing configurations
- Migrating between fencing configurations using response files
- Controlling VCS behavior
- VCS behavior on resource faults
- About controlling VCS behavior at the service group level
- About AdaptiveHA
- Customized behavior diagrams
- About preventing concurrency violation
- VCS behavior for resources that support the intentional offline functionality
- VCS behavior when a service group is restarted
- About controlling VCS behavior at the resource level
- VCS behavior on loss of storage connectivity
- Service group workload management
- Sample configurations depicting workload management
- The role of service group dependencies
- About communications, membership, and data protection in the cluster
- Section IV. Administration - Beyond the basics
- VCS event notification
- VCS event triggers
- Using event triggers
- List of event triggers
- Virtual Business Services
- Section V. Veritas High Availability Configuration wizard
- Introducing the Veritas High Availability Configuration wizard
- Administering application monitoring from the Veritas High Availability view
- Administering application monitoring from the Veritas High Availability view
- Administering application monitoring from the Veritas High Availability view
- Section VI. Cluster configurations for disaster recovery
- Connecting clusters–Creating global clusters
- VCS global clusters: The building blocks
- About global cluster management
- About serialization - The Authority attribute
- Prerequisites for global clusters
- Setting up a global cluster
- About IPv6 support with global clusters
- About cluster faults
- About setting up a disaster recovery fire drill
- Test scenario for a multi-tiered environment
- Administering global clusters from the command line
- About global querying in a global cluster setup
- Administering clusters in global cluster setup
- Setting up replicated data clusters
- Setting up campus clusters
- Connecting clusters–Creating global clusters
- Section VII. Troubleshooting and performance
- VCS performance considerations
- How cluster components affect performance
- How cluster operations affect performance
- VCS performance consideration when a system panics
- About scheduling class and priority configuration
- VCS agent statistics
- About VCS tunable parameters
- Troubleshooting and recovery for VCS
- VCS message logging
- Gathering VCS information for support analysis
- Troubleshooting the VCS engine
- Troubleshooting Low Latency Transport (LLT)
- Troubleshooting Group Membership Services/Atomic Broadcast (GAB)
- Troubleshooting VCS startup
- Troubleshooting issues with systemd unit service files
- Troubleshooting service groups
- Troubleshooting resources
- Troubleshooting sites
- Troubleshooting I/O fencing
- Fencing startup reports preexisting split-brain
- Troubleshooting CP server
- Troubleshooting server-based fencing on the VCS cluster nodes
- Issues during online migration of coordination points
- Troubleshooting notification
- Troubleshooting and recovery for global clusters
- Troubleshooting licensing
- Licensing error messages
- Troubleshooting secure configurations
- Troubleshooting wizard-based configuration issues
- Troubleshooting issues with the Veritas High Availability view
- VCS message logging
- VCS performance considerations
- Section VIII. Appendixes
About the Steward process: Split-brain in two-cluster global clusters
Failure of all heartbeats between any two clusters in a global cluster indicates one of the following:
The remote cluster is faulted.
All communication links between the two clusters are broken.
In global clusters with three or more clusters, VCS queries the connected clusters to confirm that the remote cluster is truly down. This mechanism is called inquiry.
In a two-cluster setup, VCS uses the Steward process to minimize chances of a wide-area split-brain. The process runs as a standalone binary on a system outside of the global cluster configuration.
To configure redundancy for the Steward process, you can configure Steward in one of the following ways:
Configure high availability of a single Steward process:
You can configure the Steward process in a two-node cluster. In case of a failure, the Steward process fails over to the other node in the cluster.
Configure multiple Stewards:
You can configure multiple Stewards. Each Steward can be configured at a different site. If the communication links between one of the Stewards and one of the clusters are lost, the Steward process at the other site can respond to the inquiry.
Figure: Steward process: Split-brain in two-cluster global clusters depicts the Steward process to minimize chances of a split brain within a two-cluster setup.
When all communication links between any two clusters are lost, each cluster contacts the Steward with an inquiry message. The Steward sends an ICMP ping to the cluster in question and responds with a negative inquiry if the cluster is running or with positive inquiry if the cluster is down. In case of multiple stewards, the cluster sends the inquiry to all the Stewards simultaneously. If at least one Steward responds with a negative inquiry, VCS assumes that the other cluster is running and does not need any corrective action.
The Steward can also be used in configurations with more than two clusters. VCS provides the option of securing communication between the Steward process and the wide-area connectors.
In non-secure configurations, you can configure the steward process on a platform that is different to that of the global cluster nodes. Secure configurations have not been tested for running the steward process on a different platform.
For example, you can run the steward process on a Windows system for a global cluster running on Linux systems. However, the VCS release for Linux contains the steward binary for Linux only. You must copy the steward binary for Windows from the VCS installation directory on a Windows cluster, typically C:\Program Files\VERITAS\Cluster Server
.
A Steward is effective only if there are independent paths from each cluster to the host that runs the Steward. If there is only one path between the two clusters, you must prevent split-brain by confirming manually via telephone or some messaging system with administrators at the remote site if a failure has occurred. By default, VCS global clusters fail over an application across cluster boundaries with administrator confirmation. You can configure automatic failover by setting the ClusterFailOverPolicy attribute to Auto.
The default port for the steward is 14156.
More Information