Storage Foundation Cluster File System High Availability 7.2 Administrator's Guide - Solaris
- Section I. Introducing Storage Foundation Cluster File System High Availability
- Overview of Storage Foundation Cluster File System High Availability
- About Veritas File System
- About Storage Foundation Cluster File System (SFCFS)
- How Dynamic Multi-Pathing works
- How DMP works
- How Veritas Volume Manager works
- How Veritas Volume Manager works with the operating system
- How Veritas Volume Manager handles storage management
- Volume layouts in Veritas Volume Manager
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- How VxVM handles hardware clones or snapshots
- How Veritas File System works
- How Storage Foundation Cluster File System High Availability works
- About Storage Foundation Cluster File System High Availability architecture
- About Veritas File System features supported in cluster file systems
- About single network link and reliability
- About I/O fencing
- About preventing data corruption with I/O fencing
- About I/O fencing components
- About server-based I/O fencing
- About secure communication between the SFCFSHA cluster and CP server
- How Cluster Volume Manager works
- Overview of clustering
- Cluster Volume Manager (CVM) tolerance to storage connectivity failures
- Storage disconnectivity and CVM disk detach policies
- CVM initialization and configuration
- Dirty region logging in cluster environments
- Multiple host failover configurations
- About Flexible Storage Sharing
- Overview of Storage Foundation Cluster File System High Availability
- Section II. Provisioning storage
- Provisioning new storage
- Advanced allocation methods for configuring storage
- Customizing allocation behavior
- Using rules to make volume allocation more efficient
- Understanding persistent attributes
- Customizing disk classes for allocation
- Specifying allocation constraints for vxassist operations with the use clause and the require clause
- Creating volumes of a specific layout
- Customizing allocation behavior
- Creating and mounting VxFS file systems
- Creating a VxFS file system
- Mounting a VxFS file system
- tmplog mount option
- ioerror mount option
- largefiles and nolargefiles mount options
- Resizing a file system
- Monitoring free space
- Extent attributes
- Section III. Administering multi-pathing with DMP
- Administering Dynamic Multi-Pathing
- Discovering and configuring newly added disk devices
- About discovering disks and dynamically adding disk arrays
- How to administer the Device Discovery Layer
- Administering DMP using the vxdmpadm utility
- Gathering and displaying I/O statistics
- Specifying the I/O policy
- Managing DMP devices for the ZFS root pool
- Discovering and configuring newly added disk devices
- Dynamic Reconfiguration of devices
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Managing devices
- Displaying disk information
- Changing the disk device naming scheme
- Adding and removing disks
- Event monitoring
- Administering Dynamic Multi-Pathing
- Section IV. Administering Storage Foundation Cluster File System High Availability
- Administering Storage Foundation Cluster File System High Availability and its components
- Administering CFS
- About the mount, fsclustadm, and fsadm commands
- When the CFS primary node fails
- About Snapshots on SFCFSHA
- Administering VCS
- Administering CVM
- About setting cluster node preferences for master failover
- About changing the CVM master manually
- Importing disk groups as shared
- Administering Flexible Storage Sharing
- Administering ODM
- About administering I/O fencing
- About the vxfentsthdw utility
- Testing the coordinator disk group using the -c option of vxfentsthdw
- About the vxfenadm utility
- About the vxfenclearpre utility
- About the vxfenswap utility
- About administering the coordination point server
- About migrating between disk-based and server-based fencing configurations
- Migrating between fencing configurations using response files
- About the vxfentsthdw utility
- Administering SFCFSHA global clusters
- Using Clustered NFS
- Understanding how Clustered NFS works
- Configure and unconfigure Clustered NFS
- Reconciling major and minor numbers for NFS shared disks
- Administering Clustered NFS
- Samples for configuring a Clustered NFS
- Using Common Internet File System
- Deploying Oracle with Clustered NFS
- Administering sites and remote mirrors
- About sites and remote mirrors
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Failure and recovery scenarios
- Administering Storage Foundation Cluster File System High Availability and its components
- Section V. Optimizing I/O performance
- Section VI. Veritas Extension for Oracle Disk Manager
- Using Veritas Extension for Oracle Disk Manager
- About Oracle Disk Manager
- About Oracle Disk Manager and Oracle Managed Files
- Using Cached ODM
- Using Veritas Extension for Oracle Disk Manager
- Section VII. Using Point-in-time copies
- Understanding point-in-time copy methods
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Volume-level snapshots
- Storage Checkpoints
- About FileSnaps
- About snapshot file systems
- Administering volume snapshots
- Traditional third-mirror break-off snapshots
- Full-sized instant snapshots
- Creating instant snapshots
- Adding an instant snap DCO and DCO volume
- Controlling instant snapshot synchronization
- Creating instant snapshots
- Cascaded snapshots
- Adding a version 0 DCO and DCO volume
- Administering Storage Checkpoints
- Storage Checkpoint administration
- Administering FileSnaps
- Administering snapshot file systems
- Understanding point-in-time copy methods
- Section VIII. Optimizing storage with Storage Foundation Cluster File System High Availability
- Understanding storage optimization solutions in Storage Foundation Cluster File System High Availability
- Migrating data from thick storage to thin storage
- Maintaining Thin Storage with Thin Reclamation
- Reclamation of storage on thin reclamation arrays
- Identifying thin and thin reclamation LUNs
- Veritas InfoScale 4k sector device support solution
- Section IX. Maximizing storage utilization
- Understanding storage tiering with SmartTier
- Creating and administering volume sets
- Multi-volume file systems
- Features implemented using multi-volume file system (MVFS) support
- Adding a volume to and removing a volume from a multi-volume file system
- Volume encapsulation
- Load balancing
- Administering SmartTier
- About SmartTier
- Placement classes
- Administering placement policies
- File placement policy rules
- Multiple criteria in file placement policy rule statements
- Using SmartTier with solid state disks
- Sub-file relocation
- Administering hot-relocation
- How hot-relocation works
- Moving relocated subdisks
- Deduplicating data on Solaris SPARC
- Compressing files
- About compressing files
- Use cases for compressing files
- Section X. Administering storage
- Managing volumes and disk groups
- Rules for determining the default disk group
- Moving volumes or disks
- Monitoring and controlling tasks
- Performing online relayout
- Adding a mirror to a volume
- Managing disk groups
- Disk group versions
- Displaying disk group information
- Importing a disk group
- Moving disk groups between systems
- Importing a disk group containing hardware cloned disks
- Handling conflicting configuration copies
- Destroying a disk group
- Backing up and restoring disk group configuration data
- Managing plexes and subdisks
- Decommissioning storage
- Rootability
- Encapsulating a disk
- Rootability
- Administering an encapsulated boot disk
- Quotas
- Using Veritas File System quotas
- File Change Log
- Managing volumes and disk groups
- Section XI. Reference
- Appendix A. Reverse path name lookup
- Appendix B. Tunable parameters
- Tuning the VxFS file system
- Methods to change Dynamic Multi-Pathing tunable parameters
- Tunable parameters for VxVM
- Methods to change Veritas Volume Manager tunable parameters
- About LLT tunable parameters
- About GAB tunable parameters
- About VXFEN tunable parameters
- Appendix C. Veritas File System disk layout
- Appendix D. Command reference
- Appendix E. Creating a starter database
How preferred fencing works
The I/O fencing driver uses coordination points to prevent split-brain in a VCS cluster. At the time of a network partition, the fencing driver in each subcluster races for the coordination points. The subcluster that grabs the majority of coordination points survives whereas the fencing driver causes a system panic on nodes from all other subclusters. By default, the fencing driver favors the subcluster with maximum number of nodes during the race for coordination points.
This default racing preference does not take into account the application groups that are online on any nodes or the system capacity in any subcluster. For example, consider a two-node cluster where you configured an application on one node and the other node is a standby-node. If there is a network partition and the standby-node wins the race, the node where the application runs panics and VCS has to bring the application online on the standby-node. This behavior causes disruption and takes time for the application to fail over to the surviving node and then to start up again.
The preferred fencing feature lets you specify how the fencing driver must determine the surviving subcluster. The preferred fencing solution makes use of a fencing parameter called node weight. VCS calculates the node weight based on online applications, system capacity, and site preference details that you provide using specific VCS attributes, and passes to the fencing driver to influence the result of race for coordination points. At the time of a race, the racer node adds up the weights for all nodes in the local subcluster and in the leaving subcluster. If the leaving subcluster has a higher sum (of node weights) then the racer for this subcluster delays the race for the coordination points. Thus, the subcluster that has critical systems or critical applications wins the race.
The preferred fencing feature uses the cluster-level attribute PreferredFencingPolicy that takes the following race policy values:
Disabled (default): Preferred fencing is disabled.
When the PreferredFencingPolicy attribute value is set as Disabled, VCS sets the count based race policy and resets the value of node weight as 0.
System: Based on the capacity of the systems in a subcluster.
If one system is more powerful than others in terms of architecture, number of CPUs, or memory, this system is given preference in the fencing race.
When the PreferredFencingPolicy attribute value is set as System, VCS calculates node weight based on the system-level attribute FencingWeight.
Group: Based on the higher priority applications in a subcluster.
The fencing driver takes into account the service groups that are online on the nodes in any subcluster.
In the event of a network partition, I/O fencing determines whether the VCS engine is running on all the nodes that participate in the race for coordination points. If VCS engine is running on all the nodes, the node with higher priority service groups is given preference during the fencing race.
However, if the VCS engine instance on a node with higher priority service groups is killed for some reason, I/O fencing resets the preferred fencing node weight for that node to zero. I/O fencing does not prefer that node for membership arbitration. Instead, I/O fencing prefers a node that has an instance of VCS engine running on it even if the node has lesser priority service groups.
Without synchronization between VCS engine and I/O fencing, a node with high priority service groups but without VCS engine running on it may win the race. Such a situation means that the service groups on the loser node cannot failover to the surviving node.
When the PreferredFencingPolicy attribute value is set as Group, VCS calculates node weight based on the group-level attribute Priority for those service groups that are active.
Site: Based on the priority assigned to sites in a subcluster.
The Site policy is available only if you set the cluster attribute SiteAware to 1. VCS sets higher weights to the nodes in a higher priority site and lesser weights to the nodes in a lower priority site. The site with highest cumulative node weight becomes the preferred site. In a network partition between sites, VCS prefers the subcluster with nodes from the preferred site in the race for coordination points.
See the Cluster Server Administrator's Guide for more information on the VCS attributes.