Storage Foundation Cluster File System High Availability 7.2 Administrator's Guide - Solaris
- Section I. Introducing Storage Foundation Cluster File System High Availability
- Overview of Storage Foundation Cluster File System High Availability
- About Veritas File System
- About Storage Foundation Cluster File System (SFCFS)
- How Dynamic Multi-Pathing works
- How DMP works
- How Veritas Volume Manager works
- How Veritas Volume Manager works with the operating system
- How Veritas Volume Manager handles storage management
- Volume layouts in Veritas Volume Manager
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- How VxVM handles hardware clones or snapshots
- How Veritas File System works
- How Storage Foundation Cluster File System High Availability works
- About Storage Foundation Cluster File System High Availability architecture
- About Veritas File System features supported in cluster file systems
- About single network link and reliability
- About I/O fencing
- About preventing data corruption with I/O fencing
- About I/O fencing components
- About server-based I/O fencing
- About secure communication between the SFCFSHA cluster and CP server
- How Cluster Volume Manager works
- Overview of clustering
- Cluster Volume Manager (CVM) tolerance to storage connectivity failures
- Storage disconnectivity and CVM disk detach policies
- CVM initialization and configuration
- Dirty region logging in cluster environments
- Multiple host failover configurations
- About Flexible Storage Sharing
- Overview of Storage Foundation Cluster File System High Availability
- Section II. Provisioning storage
- Provisioning new storage
- Advanced allocation methods for configuring storage
- Customizing allocation behavior
- Using rules to make volume allocation more efficient
- Understanding persistent attributes
- Customizing disk classes for allocation
- Specifying allocation constraints for vxassist operations with the use clause and the require clause
- Creating volumes of a specific layout
- Customizing allocation behavior
- Creating and mounting VxFS file systems
- Creating a VxFS file system
- Mounting a VxFS file system
- tmplog mount option
- ioerror mount option
- largefiles and nolargefiles mount options
- Resizing a file system
- Monitoring free space
- Extent attributes
- Section III. Administering multi-pathing with DMP
- Administering Dynamic Multi-Pathing
- Discovering and configuring newly added disk devices
- About discovering disks and dynamically adding disk arrays
- How to administer the Device Discovery Layer
- Administering DMP using the vxdmpadm utility
- Gathering and displaying I/O statistics
- Specifying the I/O policy
- Managing DMP devices for the ZFS root pool
- Discovering and configuring newly added disk devices
- Dynamic Reconfiguration of devices
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Managing devices
- Displaying disk information
- Changing the disk device naming scheme
- Adding and removing disks
- Event monitoring
- Administering Dynamic Multi-Pathing
- Section IV. Administering Storage Foundation Cluster File System High Availability
- Administering Storage Foundation Cluster File System High Availability and its components
- Administering CFS
- About the mount, fsclustadm, and fsadm commands
- When the CFS primary node fails
- About Snapshots on SFCFSHA
- Administering VCS
- Administering CVM
- About setting cluster node preferences for master failover
- About changing the CVM master manually
- Importing disk groups as shared
- Administering Flexible Storage Sharing
- Administering ODM
- About administering I/O fencing
- About the vxfentsthdw utility
- Testing the coordinator disk group using the -c option of vxfentsthdw
- About the vxfenadm utility
- About the vxfenclearpre utility
- About the vxfenswap utility
- About administering the coordination point server
- About migrating between disk-based and server-based fencing configurations
- Migrating between fencing configurations using response files
- About the vxfentsthdw utility
- Administering SFCFSHA global clusters
- Using Clustered NFS
- Understanding how Clustered NFS works
- Configure and unconfigure Clustered NFS
- Reconciling major and minor numbers for NFS shared disks
- Administering Clustered NFS
- Samples for configuring a Clustered NFS
- Using Common Internet File System
- Deploying Oracle with Clustered NFS
- Administering sites and remote mirrors
- About sites and remote mirrors
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Failure and recovery scenarios
- Administering Storage Foundation Cluster File System High Availability and its components
- Section V. Optimizing I/O performance
- Section VI. Veritas Extension for Oracle Disk Manager
- Using Veritas Extension for Oracle Disk Manager
- About Oracle Disk Manager
- About Oracle Disk Manager and Oracle Managed Files
- Using Cached ODM
- Using Veritas Extension for Oracle Disk Manager
- Section VII. Using Point-in-time copies
- Understanding point-in-time copy methods
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Volume-level snapshots
- Storage Checkpoints
- About FileSnaps
- About snapshot file systems
- Administering volume snapshots
- Traditional third-mirror break-off snapshots
- Full-sized instant snapshots
- Creating instant snapshots
- Adding an instant snap DCO and DCO volume
- Controlling instant snapshot synchronization
- Creating instant snapshots
- Cascaded snapshots
- Adding a version 0 DCO and DCO volume
- Administering Storage Checkpoints
- Storage Checkpoint administration
- Administering FileSnaps
- Administering snapshot file systems
- Understanding point-in-time copy methods
- Section VIII. Optimizing storage with Storage Foundation Cluster File System High Availability
- Understanding storage optimization solutions in Storage Foundation Cluster File System High Availability
- Migrating data from thick storage to thin storage
- Maintaining Thin Storage with Thin Reclamation
- Reclamation of storage on thin reclamation arrays
- Identifying thin and thin reclamation LUNs
- Veritas InfoScale 4k sector device support solution
- Section IX. Maximizing storage utilization
- Understanding storage tiering with SmartTier
- Creating and administering volume sets
- Multi-volume file systems
- Features implemented using multi-volume file system (MVFS) support
- Adding a volume to and removing a volume from a multi-volume file system
- Volume encapsulation
- Load balancing
- Administering SmartTier
- About SmartTier
- Placement classes
- Administering placement policies
- File placement policy rules
- Multiple criteria in file placement policy rule statements
- Using SmartTier with solid state disks
- Sub-file relocation
- Administering hot-relocation
- How hot-relocation works
- Moving relocated subdisks
- Deduplicating data on Solaris SPARC
- Compressing files
- About compressing files
- Use cases for compressing files
- Section X. Administering storage
- Managing volumes and disk groups
- Rules for determining the default disk group
- Moving volumes or disks
- Monitoring and controlling tasks
- Performing online relayout
- Adding a mirror to a volume
- Managing disk groups
- Disk group versions
- Displaying disk group information
- Importing a disk group
- Moving disk groups between systems
- Importing a disk group containing hardware cloned disks
- Handling conflicting configuration copies
- Destroying a disk group
- Backing up and restoring disk group configuration data
- Managing plexes and subdisks
- Decommissioning storage
- Rootability
- Encapsulating a disk
- Rootability
- Administering an encapsulated boot disk
- Quotas
- Using Veritas File System quotas
- File Change Log
- Managing volumes and disk groups
- Section XI. Reference
- Appendix A. Reverse path name lookup
- Appendix B. Tunable parameters
- Tuning the VxFS file system
- Methods to change Dynamic Multi-Pathing tunable parameters
- Tunable parameters for VxVM
- Methods to change Veritas Volume Manager tunable parameters
- About LLT tunable parameters
- About GAB tunable parameters
- About VXFEN tunable parameters
- Appendix C. Veritas File System disk layout
- Appendix D. Command reference
- Appendix E. Creating a starter database
Creating and managing third-mirror break-off snapshots
Break-off snapshots are suitable for write-intensive volumes, such as database redo logs.
To turn one or more existing plexes in a volume into a break-off instant snapshot volume, the volume must be a non-layered volume with a mirror or mirror-stripe layout, or a RAID-5 volume that you have converted to a special layered volume and then mirrored. The plexes in a volume with a stripe-mirror layout are mirrored at the subvolume level, and cannot be broken off.
The attributes for a snapshot are specified as a tuple to the vxsnap make command. This command accepts multiple tuples. One tuple is required for each snapshot that is being created. Each element of a tuple is separated from the next by a slash character (/). Tuples are separated by white space.
To create and manage a third-mirror break-off snapshot
- To create the snapshot, you can either take some of the existing ACTIVE plexes in the volume, or you can use the following command to add new snapshot mirrors to the volume:
# vxsnap [-b] [-g diskgroup] addmir volume [nmirror=N] \ [alloc=storage_attributes]
By default, the vxsnap addmir command adds one snapshot mirror to a volume unless you use the nmirror attribute to specify a different number of mirrors. The mirrors remain in the SNAPATT state until they are fully synchronized. The -b option can be used to perform the synchronization in the background. Once synchronized, the mirrors are placed in the SNAPDONE state.
For example, the following command adds 2 mirrors to the volume, vol1, on disks mydg10 and mydg11:
# vxsnap -g mydg addmir vol1 nmirror=2 alloc=mydg10,mydg11
If you specify the -b option to the vxsnap addmir command, you can use the vxsnap snapwait command to wait for synchronization of the snapshot plexes to complete, as shown in this example:
# vxsnap -g mydg snapwait vol1 nmirror=2
- To create a third-mirror break-off snapshot, use the following form of the vxsnap make command.
# vxsnap [-g diskgroup] make source=volume[/newvol=snapvol]\ {/plex=plex1[,plex2,...]|/nmirror=number}
Either of the following attributes may be specified to create the new snapshot volume, snapvol, by breaking off one or more existing plexes in the original volume:
plex
Specifies the plexes in the existing volume that are to be broken off.
nmirror
Specifies how many plexes are to be broken off. This attribute can only be used with plexes that are in the SNAPDONE state. (Such plexes could have been added to the volume by using the vxsnap addmir command.)
Snapshots that are created from one or more ACTIVE or SNAPDONE plexes in the volume are already synchronized by definition.
For backup purposes, a snapshot volume with one plex should be sufficient.
For example, to create the instant snapshot volume, snap2myvol, of the volume, myvol, in the disk group, mydg, from a single existing plex in the volume, use the following command:
# vxsnap -g mydg make source=myvol/newvol=snap2myvol/nmirror=1
The next example shows how to create a mirrored snapshot from two existing plexes in the volume:
# vxsnap -g mydg make source=myvol/newvol=snap2myvol/plex=myvol-03,myvol-04
- Use fsck (or some utility appropriate for the application running on the volume) to clean the temporary volume's contents. For example, you can use this command with a VxFS file system:
# fsck -F vxfs /dev/vx/rdsk/diskgroup/snapshot
The specified device must have a valid entry in the /etc/vfstab file.
- To backup the data in the snapshot, use an appropriate utility or operating system command to copy the contents of the snapshot to tape, or to some other backup medium.
You now have the following options:
Refresh the contents of the snapshot. This creates a new point-in-time image of the original volume ready for another backup. If synchronization was already in progress on the snapshot, this operation may result in large portions of the snapshot having to be resynchronized.
Reattach some or all of the plexes of the snapshot volume with the original volume.
Restore the contents of the original volume from the snapshot volume. You can choose whether none, a subset, or all of the plexes of the snapshot volume are returned to the original volume as a result of the operation.
Dissociate the snapshot volume entirely from the original volume. This may be useful if you want to use the copy for other purposes such as testing or report generation. If desired, you can delete the dissociated volume.
If the snapshot is part of a snapshot hierarchy, you can also choose to split this hierarchy from its parent volumes.