Storage Foundation Cluster File System High Availability 7.2 Administrator's Guide - Solaris
- Section I. Introducing Storage Foundation Cluster File System High Availability
- Overview of Storage Foundation Cluster File System High Availability
- About Veritas File System
- About Storage Foundation Cluster File System (SFCFS)
- How Dynamic Multi-Pathing works
- How DMP works
- How Veritas Volume Manager works
- How Veritas Volume Manager works with the operating system
- How Veritas Volume Manager handles storage management
- Volume layouts in Veritas Volume Manager
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- How VxVM handles hardware clones or snapshots
- How Veritas File System works
- How Storage Foundation Cluster File System High Availability works
- About Storage Foundation Cluster File System High Availability architecture
- About Veritas File System features supported in cluster file systems
- About single network link and reliability
- About I/O fencing
- About preventing data corruption with I/O fencing
- About I/O fencing components
- About server-based I/O fencing
- About secure communication between the SFCFSHA cluster and CP server
- How Cluster Volume Manager works
- Overview of clustering
- Cluster Volume Manager (CVM) tolerance to storage connectivity failures
- Storage disconnectivity and CVM disk detach policies
- CVM initialization and configuration
- Dirty region logging in cluster environments
- Multiple host failover configurations
- About Flexible Storage Sharing
- Overview of Storage Foundation Cluster File System High Availability
- Section II. Provisioning storage
- Provisioning new storage
- Advanced allocation methods for configuring storage
- Customizing allocation behavior
- Using rules to make volume allocation more efficient
- Understanding persistent attributes
- Customizing disk classes for allocation
- Specifying allocation constraints for vxassist operations with the use clause and the require clause
- Creating volumes of a specific layout
- Customizing allocation behavior
- Creating and mounting VxFS file systems
- Creating a VxFS file system
- Mounting a VxFS file system
- tmplog mount option
- ioerror mount option
- largefiles and nolargefiles mount options
- Resizing a file system
- Monitoring free space
- Extent attributes
- Section III. Administering multi-pathing with DMP
- Administering Dynamic Multi-Pathing
- Discovering and configuring newly added disk devices
- About discovering disks and dynamically adding disk arrays
- How to administer the Device Discovery Layer
- Administering DMP using the vxdmpadm utility
- Gathering and displaying I/O statistics
- Specifying the I/O policy
- Managing DMP devices for the ZFS root pool
- Discovering and configuring newly added disk devices
- Dynamic Reconfiguration of devices
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Managing devices
- Displaying disk information
- Changing the disk device naming scheme
- Adding and removing disks
- Event monitoring
- Administering Dynamic Multi-Pathing
- Section IV. Administering Storage Foundation Cluster File System High Availability
- Administering Storage Foundation Cluster File System High Availability and its components
- Administering CFS
- About the mount, fsclustadm, and fsadm commands
- When the CFS primary node fails
- About Snapshots on SFCFSHA
- Administering VCS
- Administering CVM
- About setting cluster node preferences for master failover
- About changing the CVM master manually
- Importing disk groups as shared
- Administering Flexible Storage Sharing
- Administering ODM
- About administering I/O fencing
- About the vxfentsthdw utility
- Testing the coordinator disk group using the -c option of vxfentsthdw
- About the vxfenadm utility
- About the vxfenclearpre utility
- About the vxfenswap utility
- About administering the coordination point server
- About migrating between disk-based and server-based fencing configurations
- Migrating between fencing configurations using response files
- About the vxfentsthdw utility
- Administering SFCFSHA global clusters
- Using Clustered NFS
- Understanding how Clustered NFS works
- Configure and unconfigure Clustered NFS
- Reconciling major and minor numbers for NFS shared disks
- Administering Clustered NFS
- Samples for configuring a Clustered NFS
- Using Common Internet File System
- Deploying Oracle with Clustered NFS
- Administering sites and remote mirrors
- About sites and remote mirrors
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Failure and recovery scenarios
- Administering Storage Foundation Cluster File System High Availability and its components
- Section V. Optimizing I/O performance
- Section VI. Veritas Extension for Oracle Disk Manager
- Using Veritas Extension for Oracle Disk Manager
- About Oracle Disk Manager
- About Oracle Disk Manager and Oracle Managed Files
- Using Cached ODM
- Using Veritas Extension for Oracle Disk Manager
- Section VII. Using Point-in-time copies
- Understanding point-in-time copy methods
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Volume-level snapshots
- Storage Checkpoints
- About FileSnaps
- About snapshot file systems
- Administering volume snapshots
- Traditional third-mirror break-off snapshots
- Full-sized instant snapshots
- Creating instant snapshots
- Adding an instant snap DCO and DCO volume
- Controlling instant snapshot synchronization
- Creating instant snapshots
- Cascaded snapshots
- Adding a version 0 DCO and DCO volume
- Administering Storage Checkpoints
- Storage Checkpoint administration
- Administering FileSnaps
- Administering snapshot file systems
- Understanding point-in-time copy methods
- Section VIII. Optimizing storage with Storage Foundation Cluster File System High Availability
- Understanding storage optimization solutions in Storage Foundation Cluster File System High Availability
- Migrating data from thick storage to thin storage
- Maintaining Thin Storage with Thin Reclamation
- Reclamation of storage on thin reclamation arrays
- Identifying thin and thin reclamation LUNs
- Veritas InfoScale 4k sector device support solution
- Section IX. Maximizing storage utilization
- Understanding storage tiering with SmartTier
- Creating and administering volume sets
- Multi-volume file systems
- Features implemented using multi-volume file system (MVFS) support
- Adding a volume to and removing a volume from a multi-volume file system
- Volume encapsulation
- Load balancing
- Administering SmartTier
- About SmartTier
- Placement classes
- Administering placement policies
- File placement policy rules
- Multiple criteria in file placement policy rule statements
- Using SmartTier with solid state disks
- Sub-file relocation
- Administering hot-relocation
- How hot-relocation works
- Moving relocated subdisks
- Deduplicating data on Solaris SPARC
- Compressing files
- About compressing files
- Use cases for compressing files
- Section X. Administering storage
- Managing volumes and disk groups
- Rules for determining the default disk group
- Moving volumes or disks
- Monitoring and controlling tasks
- Performing online relayout
- Adding a mirror to a volume
- Managing disk groups
- Disk group versions
- Displaying disk group information
- Importing a disk group
- Moving disk groups between systems
- Importing a disk group containing hardware cloned disks
- Handling conflicting configuration copies
- Destroying a disk group
- Backing up and restoring disk group configuration data
- Managing plexes and subdisks
- Decommissioning storage
- Rootability
- Encapsulating a disk
- Rootability
- Administering an encapsulated boot disk
- Quotas
- Using Veritas File System quotas
- File Change Log
- Managing volumes and disk groups
- Section XI. Reference
- Appendix A. Reverse path name lookup
- Appendix B. Tunable parameters
- Tuning the VxFS file system
- Methods to change Dynamic Multi-Pathing tunable parameters
- Tunable parameters for VxVM
- Methods to change Veritas Volume Manager tunable parameters
- About LLT tunable parameters
- About GAB tunable parameters
- About VXFEN tunable parameters
- Appendix C. Veritas File System disk layout
- Appendix D. Command reference
- Appendix E. Creating a starter database
Handling errors when importing disks
When you move disks from a system that has crashed or that failed to detect the group before the disk was moved, the locks stored on the disks remain and must be cleared. The system returns the following error message:
VxVM vxdg ERROR V-5-1-587 disk group groupname: import failed: Disk is in use by another host
The next message indicates that the disk group does not contains any valid disks (not that it does not contains any disks):
VxVM vxdg ERROR V-5-1-587 Disk group groupname: import failed: No valid disk found containing disk group
The disks may be considered invalid due to a mismatch between the host ID in their configuration copies and that stored in the /etc/vx/volboot file.
To clear locks on a specific set of devices, use the following command:
# vxdisk clearimport devicename ...
To clear the locks during import, use the following command:
# vxdg -C import diskgroup
Warning:
Be careful when using the vxdisk clearimport or vxdg -C import command on systems that see the same disks via a SAN. Clearing the locks allows those disks to be accessed at the same time from multiple hosts and can result in corrupted data.
A disk group can be imported successfully if all the disks are accessible that were visible when the disk group was last imported successfully. However, sometimes you may need to specify the -f option to forcibly import a disk group if some disks are not available. If the import operation fails, an error message is displayed.
The following error message indicates a fatal error that requires hardware repair or the creation of a new disk group, and recovery of the disk group configuration and data:
VxVM vxdg ERROR V-5-1-587 Disk group groupname: import failed: Disk group has no valid configuration copies
The following error message indicates a recoverable error.
VxVM vxdg ERROR V-5-1-587 Disk group groupname: import failed: Disk for disk group not found
If some of the disks in the disk group have failed, you can force the disk group to be imported by specifying the -f option to the vxdg import command:
# vxdg -f import diskgroup
Warning:
Be careful when using the -f option. It can cause the same disk group to be imported twice from different sets of disks. This can cause the disk group configuration to become inconsistent.
As using the -f option to force the import of an incomplete disk group counts as a successful import, an incomplete disk group may be imported subsequently without this option being specified. This may not be what you expect.
You can also import the disk group as a shared disk group.
See Importing disk groups as shared.
These operations can also be performed using the vxdiskadm utility. To deport a disk group using vxdiskadm, select Remove access to (deport) a disk group from the main menu. To import a disk group, select Enable access to (import) a disk group. The vxdiskadm import operation checks for host import locks and prompts to see if you want to clear any that are found. It also starts volumes in the disk group.
More Information