InfoScale™ 9.0 Storage Foundation and High Availability Configuration and Upgrade Guide - Linux
- Section I. Introduction to SFHA
- Section II. Configuration of SFHA
- Preparing to configure
- Preparing to configure SFHA clusters for data integrity
- About planning to configure I/O fencing
- Setting up the CP server
- Configuring the CP server manually
- Configuring CP server using response files
- Configuring SFHA
- Configuring Storage Foundation High Availability using the installer
- Configuring a secure cluster node by node
- Completing the SFHA configuration
- Verifying and updating licenses on the system
- Configuring Storage Foundation High Availability using the installer
- Configuring SFHA clusters for data integrity
- Setting up disk-based I/O fencing using installer
- Setting up server-based I/O fencing using installer
- Manually configuring SFHA clusters for data integrity
- Setting up disk-based I/O fencing manually
- Setting up server-based I/O fencing manually
- Configuring server-based fencing on the SFHA cluster manually
- Setting up non-SCSI-3 fencing in virtual environments manually
- Setting up majority-based I/O fencing manually
- Performing an automated SFHA configuration using response files
- Performing an automated I/O fencing configuration using response files
- Section III. Upgrade of SFHA
- Planning to upgrade SFHA
- Preparing to upgrade SFHA
- Upgrading Storage Foundation and High Availability
- Performing a rolling upgrade of SFHA
- Performing a phased upgrade of SFHA
- About phased upgrade
- Performing a phased upgrade using the product installer
- Performing an automated SFHA upgrade using response files
- Upgrading SFHA using YUM
- Performing post-upgrade tasks
- Post-upgrade tasks when VCS agents for VVR are configured
- About enabling LDAP authentication for clusters that run in secure mode
- Planning to upgrade SFHA
- Section IV. Post-installation tasks
- Section V. Adding and removing nodes
- Adding a node to SFHA clusters
- Adding the node to a cluster manually
- Adding a node using response files
- Configuring server-based fencing on the new node
- Removing a node from SFHA clusters
- Removing a node from a SFHA cluster
- Removing a node from a SFHA cluster
- Adding a node to SFHA clusters
- Section VI. Configuration and upgrade reference
- Appendix A. Installation scripts
- Appendix B. SFHA services and ports
- Appendix C. Configuration files
- Appendix D. Configuring the secure shell or the remote shell for communications
- Appendix E. Sample SFHA cluster setup diagrams for CP server-based I/O fencing
- Appendix F. Configuring LLT over UDP
- Using the UDP layer for LLT
- Manually configuring LLT over UDP using IPv4
- Using the UDP layer of IPv6 for LLT
- Manually configuring LLT over UDP using IPv6
- About configuring LLT over UDP multiport
- Appendix G. Using LLT over RDMA
- Configuring LLT over RDMA
- Configuring RDMA over an Ethernet network
- Configuring RDMA over an InfiniBand network
- Tuning system performance
- Manually configuring LLT over RDMA
- Troubleshooting LLT over RDMA
Recommended CP server configurations
Following are the recommended CP server configurations:
Multiple application clusters use three CP servers as their coordination points
See Figure: Three CP servers connecting to multiple application clusters.
Multiple application clusters use a single CP server and single or multiple pairs of coordinator disks (two) as their coordination points
See Figure: Single CP server with two coordinator disks for each application cluster.
Multiple application clusters use a single CP server as their coordination point
This single coordination point fencing configuration must use a highly available CP server that is configured on an SFHA cluster as its coordination point.
See Figure: Single CP server connecting to multiple application clusters.
Warning:
In a single CP server fencing configuration, arbitration facility is not available during a failover of the CP server in the SFHA cluster. So, if a network partition occurs on any application cluster during the CP server failover, the application cluster is brought down.
Although the recommended CP server configurations use three coordination points, you can use more than three coordination points for I/O fencing. Ensure that the total number of coordination points you use is an odd number. In a configuration where multiple application clusters share a common set of CP server coordination points, the application cluster as well as the CP server use a Universally Unique Identifier (UUID) to uniquely identify an application cluster.
Figure: Three CP servers connecting to multiple application clusters displays a configuration using three CP servers that are connected to multiple application clusters.
Figure: Single CP server with two coordinator disks for each application cluster displays a configuration using a single CP server that is connected to multiple application clusters with each application cluster also using two coordinator disks.
Figure: Single CP server connecting to multiple application clusters displays a configuration using a single CP server that is connected to multiple application clusters.
See Configuration diagrams for setting up server-based I/O fencing.