InfoScale™ 9.0 Storage Foundation and High Availability Configuration and Upgrade Guide - Linux
- Section I. Introduction to SFHA
- Section II. Configuration of SFHA
- Preparing to configure
- Preparing to configure SFHA clusters for data integrity
- About planning to configure I/O fencing
- Setting up the CP server
- Configuring the CP server manually
- Configuring CP server using response files
- Configuring SFHA
- Configuring Storage Foundation High Availability using the installer
- Configuring a secure cluster node by node
- Completing the SFHA configuration
- Verifying and updating licenses on the system
- Configuring Storage Foundation High Availability using the installer
- Configuring SFHA clusters for data integrity
- Setting up disk-based I/O fencing using installer
- Setting up server-based I/O fencing using installer
- Manually configuring SFHA clusters for data integrity
- Setting up disk-based I/O fencing manually
- Setting up server-based I/O fencing manually
- Configuring server-based fencing on the SFHA cluster manually
- Setting up non-SCSI-3 fencing in virtual environments manually
- Setting up majority-based I/O fencing manually
- Performing an automated SFHA configuration using response files
- Performing an automated I/O fencing configuration using response files
- Section III. Upgrade of SFHA
- Planning to upgrade SFHA
- Preparing to upgrade SFHA
- Upgrading Storage Foundation and High Availability
- Performing a rolling upgrade of SFHA
- Performing a phased upgrade of SFHA
- About phased upgrade
- Performing a phased upgrade using the product installer
- Performing an automated SFHA upgrade using response files
- Upgrading SFHA using YUM
- Performing post-upgrade tasks
- Post-upgrade tasks when VCS agents for VVR are configured
- About enabling LDAP authentication for clusters that run in secure mode
- Planning to upgrade SFHA
- Section IV. Post-installation tasks
- Section V. Adding and removing nodes
- Adding a node to SFHA clusters
- Adding the node to a cluster manually
- Adding a node using response files
- Configuring server-based fencing on the new node
- Removing a node from SFHA clusters
- Removing a node from a SFHA cluster
- Removing a node from a SFHA cluster
- Adding a node to SFHA clusters
- Section VI. Configuration and upgrade reference
- Appendix A. Installation scripts
- Appendix B. SFHA services and ports
- Appendix C. Configuration files
- Appendix D. Configuring the secure shell or the remote shell for communications
- Appendix E. Sample SFHA cluster setup diagrams for CP server-based I/O fencing
- Appendix F. Configuring LLT over UDP
- Using the UDP layer for LLT
- Manually configuring LLT over UDP using IPv4
- Using the UDP layer of IPv6 for LLT
- Manually configuring LLT over UDP using IPv6
- About configuring LLT over UDP multiport
- Appendix G. Using LLT over RDMA
- Configuring LLT over RDMA
- Configuring RDMA over an Ethernet network
- Configuring RDMA over an InfiniBand network
- Tuning system performance
- Manually configuring LLT over RDMA
- Troubleshooting LLT over RDMA
Sample configuration: direct-attached links
Figure: A typical configuration of direct-attached links that use LLT over UDP depicts a typical configuration of direct-attached links employing LLT over UDP.
The configuration that the /etc/llttab file for Node 0 represents has directly attached crossover links. It might also have the links that are connected through a hub or switch. These links do not cross routers.
LLT sends broadcast requests to peer nodes to discover their addresses. So the addresses of peer nodes do not need to be specified in the /etc/llttab file using the set-addr command. For direct attached links, you do need to set the broadcast address of the links in the /etc/llttab file. Verify that the IP addresses and broadcast addresses are set correctly by using the ifconfig -a command.
set-node Node0 set-cluster 1 #configure Links #link tag-name device node-range link-type udp port MTU \ IP-address bcast-address link link1 udp - udp 50000 - 192.1.2.1 192.1.2.255 link link2 udp - udp 50001 - 192.1.3.1 192.1.3.255
The file for Node 1 resembles:
set-node Node1 set-cluster 1 #configure Links #link tag-name device node-range link-type udp port MTU \ IP-address bcast-address link link1 udp - udp 50000 - 192.1.2.2 192.1.2.255 link link2 udp - udp 50001 - 192.1.3.2 192.1.3.255