Cluster Server 7.4.1 Administrator's Guide - Linux
- Section I. Clustering concepts and terminology
- Introducing Cluster Server
- About Cluster Server
- About cluster control guidelines
- About the physical components of VCS
- Logical components of VCS
- Types of service groups
- About resource monitoring
- Agent classifications
- About cluster control, communications, and membership
- About security services
- Components for administering VCS
- About cluster topologies
- VCS configuration concepts
- Introducing Cluster Server
- Section II. Administration - Putting VCS to work
- About the VCS user privilege model
- Administering the cluster from the command line
- About administering VCS from the command line
- About installing a VCS license
- Administering LLT
- Starting VCS
- Stopping the VCS engine and related processes
- Logging on to VCS
- About managing VCS configuration files
- About managing VCS users from the command line
- About querying VCS
- About administering service groups
- Modifying service group attributes
- About administering resources
- Enabling and disabling IMF for agents by using script
- Linking and unlinking resources
- About administering resource types
- About administering clusters
- Configuring applications and resources in VCS
- VCS bundled agents for UNIX
- Configuring NFS service groups
- About NFS
- Configuring NFS service groups
- Sample configurations
- About configuring the RemoteGroup agent
- About configuring Samba service groups
- About testing resource failover by using HA fire drills
- Predicting VCS behavior using VCS Simulator
- Section III. VCS communication and operations
- About communications, membership, and data protection in the cluster
- About cluster communications
- About cluster membership
- About membership arbitration
- About membership arbitration components
- About server-based I/O fencing
- About majority-based fencing
- About the CP server service group
- About secure communication between the VCS cluster and CP server
- About data protection
- Examples of VCS operation with I/O fencing
- About cluster membership and data protection without I/O fencing
- Examples of VCS operation without I/O fencing
- Administering I/O fencing
- About the vxfentsthdw utility
- Testing the coordinator disk group using the -c option of vxfentsthdw
- About the vxfenadm utility
- About the vxfenclearpre utility
- About the vxfenswap utility
- About administering the coordination point server
- About configuring a CP server to support IPv6 or dual stack
- About migrating between disk-based and server-based fencing configurations
- Migrating between fencing configurations using response files
- Controlling VCS behavior
- VCS behavior on resource faults
- About controlling VCS behavior at the service group level
- About AdaptiveHA
- Customized behavior diagrams
- About preventing concurrency violation
- VCS behavior for resources that support the intentional offline functionality
- VCS behavior when a service group is restarted
- About controlling VCS behavior at the resource level
- VCS behavior on loss of storage connectivity
- Service group workload management
- Sample configurations depicting workload management
- The role of service group dependencies
- About communications, membership, and data protection in the cluster
- Section IV. Administration - Beyond the basics
- VCS event notification
- VCS event triggers
- Using event triggers
- List of event triggers
- Virtual Business Services
- Section V. Veritas High Availability Configuration wizard
- Introducing the Veritas High Availability Configuration wizard
- Administering application monitoring from the Veritas High Availability view
- Administering application monitoring from the Veritas High Availability view
- Administering application monitoring from the Veritas High Availability view
- Section VI. Cluster configurations for disaster recovery
- Connecting clusters–Creating global clusters
- VCS global clusters: The building blocks
- About global cluster management
- About serialization - The Authority attribute
- Prerequisites for global clusters
- Setting up a global cluster
- About IPv6 support with global clusters
- About cluster faults
- About setting up a disaster recovery fire drill
- Test scenario for a multi-tiered environment
- Administering global clusters from the command line
- About global querying in a global cluster setup
- Administering clusters in global cluster setup
- Setting up replicated data clusters
- Setting up campus clusters
- Connecting clusters–Creating global clusters
- Section VII. Troubleshooting and performance
- VCS performance considerations
- How cluster components affect performance
- How cluster operations affect performance
- VCS performance consideration when a system panics
- About scheduling class and priority configuration
- VCS agent statistics
- About VCS tunable parameters
- Troubleshooting and recovery for VCS
- VCS message logging
- Gathering VCS information for support analysis
- Troubleshooting the VCS engine
- Troubleshooting Low Latency Transport (LLT)
- Troubleshooting Group Membership Services/Atomic Broadcast (GAB)
- Troubleshooting VCS startup
- Troubleshooting issues with systemd unit service files
- Troubleshooting service groups
- Troubleshooting resources
- Troubleshooting sites
- Troubleshooting I/O fencing
- Fencing startup reports preexisting split-brain
- Troubleshooting CP server
- Troubleshooting server-based fencing on the VCS cluster nodes
- Issues during online migration of coordination points
- Troubleshooting notification
- Troubleshooting and recovery for global clusters
- Troubleshooting licensing
- Licensing error messages
- Troubleshooting secure configurations
- Troubleshooting wizard-based configuration issues
- Troubleshooting issues with the Veritas High Availability view
- VCS message logging
- VCS performance considerations
- Section VIII. Appendixes
GAB message logging
If GAB encounters some problem, then First Failure Data Capture (FFDC) logs are also generated and dumped.
When you have configured GAB, GAB also starts a GAB logging daemon (/opt/VRTSgab/gablogd
). GAB logging daemon is enabled by default. You can change the value of the GAB tunable parameter gab_ibuf_count to disable the GAB logging daemon.
See About GAB load-time or static tunable parameters.
This GAB logging daemon collects the GAB related logs when a critical events such as an iofence or failure of the master of any GAB port occur, and stores the data in a compact binary form. You can use the gabread_ffdc utility as follows to read the GAB binary log files:
/opt/VRTSgab/gabread_ffdc-kernel_version binary_logs_files_location
You can change the values of the following environment variables that control the GAB binary log files:
GAB_FFDC_MAX_INDX: Defines the maximum number of GAB binary log files
The GAB logging daemon collects the defined number of log files each of eight MB size. The default value is 20, and the files are named
gablog.1
throughgablog.20
. At any point in time, the most recent file is thegablog.1
file.GAB_FFDC_LOGDIR: Defines the log directory location for GAB binary log files
The default location is:
/var/log/gab_ffdc
Note that the gablog daemon writes its log to the
glgd_A.log
andglgd_B.log
files in the same directory.
You can either define these variables in the following GAB startup file or use the export command. You must restart GAB for the changes to take effect.
/etc/sysconfig/gab