Cluster Server 7.4.1 Administrator's Guide - Linux
- Section I. Clustering concepts and terminology
- Introducing Cluster Server
- About Cluster Server
- About cluster control guidelines
- About the physical components of VCS
- Logical components of VCS
- Types of service groups
- About resource monitoring
- Agent classifications
- About cluster control, communications, and membership
- About security services
- Components for administering VCS
- About cluster topologies
- VCS configuration concepts
- Introducing Cluster Server
- Section II. Administration - Putting VCS to work
- About the VCS user privilege model
- Administering the cluster from the command line
- About administering VCS from the command line
- About installing a VCS license
- Administering LLT
- Starting VCS
- Stopping the VCS engine and related processes
- Logging on to VCS
- About managing VCS configuration files
- About managing VCS users from the command line
- About querying VCS
- About administering service groups
- Modifying service group attributes
- About administering resources
- Enabling and disabling IMF for agents by using script
- Linking and unlinking resources
- About administering resource types
- About administering clusters
- Configuring applications and resources in VCS
- VCS bundled agents for UNIX
- Configuring NFS service groups
- About NFS
- Configuring NFS service groups
- Sample configurations
- About configuring the RemoteGroup agent
- About configuring Samba service groups
- About testing resource failover by using HA fire drills
- Predicting VCS behavior using VCS Simulator
- Section III. VCS communication and operations
- About communications, membership, and data protection in the cluster
- About cluster communications
- About cluster membership
- About membership arbitration
- About membership arbitration components
- About server-based I/O fencing
- About majority-based fencing
- About the CP server service group
- About secure communication between the VCS cluster and CP server
- About data protection
- Examples of VCS operation with I/O fencing
- About cluster membership and data protection without I/O fencing
- Examples of VCS operation without I/O fencing
- Administering I/O fencing
- About the vxfentsthdw utility
- Testing the coordinator disk group using the -c option of vxfentsthdw
- About the vxfenadm utility
- About the vxfenclearpre utility
- About the vxfenswap utility
- About administering the coordination point server
- About configuring a CP server to support IPv6 or dual stack
- About migrating between disk-based and server-based fencing configurations
- Migrating between fencing configurations using response files
- Controlling VCS behavior
- VCS behavior on resource faults
- About controlling VCS behavior at the service group level
- About AdaptiveHA
- Customized behavior diagrams
- About preventing concurrency violation
- VCS behavior for resources that support the intentional offline functionality
- VCS behavior when a service group is restarted
- About controlling VCS behavior at the resource level
- VCS behavior on loss of storage connectivity
- Service group workload management
- Sample configurations depicting workload management
- The role of service group dependencies
- About communications, membership, and data protection in the cluster
- Section IV. Administration - Beyond the basics
- VCS event notification
- VCS event triggers
- Using event triggers
- List of event triggers
- Virtual Business Services
- Section V. Veritas High Availability Configuration wizard
- Introducing the Veritas High Availability Configuration wizard
- Administering application monitoring from the Veritas High Availability view
- Administering application monitoring from the Veritas High Availability view
- Administering application monitoring from the Veritas High Availability view
- Section VI. Cluster configurations for disaster recovery
- Connecting clusters–Creating global clusters
- VCS global clusters: The building blocks
- About global cluster management
- About serialization - The Authority attribute
- Prerequisites for global clusters
- Setting up a global cluster
- About IPv6 support with global clusters
- About cluster faults
- About setting up a disaster recovery fire drill
- Test scenario for a multi-tiered environment
- Administering global clusters from the command line
- About global querying in a global cluster setup
- Administering clusters in global cluster setup
- Setting up replicated data clusters
- Setting up campus clusters
- Connecting clusters–Creating global clusters
- Section VII. Troubleshooting and performance
- VCS performance considerations
- How cluster components affect performance
- How cluster operations affect performance
- VCS performance consideration when a system panics
- About scheduling class and priority configuration
- VCS agent statistics
- About VCS tunable parameters
- Troubleshooting and recovery for VCS
- VCS message logging
- Gathering VCS information for support analysis
- Troubleshooting the VCS engine
- Troubleshooting Low Latency Transport (LLT)
- Troubleshooting Group Membership Services/Atomic Broadcast (GAB)
- Troubleshooting VCS startup
- Troubleshooting issues with systemd unit service files
- Troubleshooting service groups
- Troubleshooting resources
- Troubleshooting sites
- Troubleshooting I/O fencing
- Fencing startup reports preexisting split-brain
- Troubleshooting CP server
- Troubleshooting server-based fencing on the VCS cluster nodes
- Issues during online migration of coordination points
- Troubleshooting notification
- Troubleshooting and recovery for global clusters
- Troubleshooting licensing
- Licensing error messages
- Troubleshooting secure configurations
- Troubleshooting wizard-based configuration issues
- Troubleshooting issues with the Veritas High Availability view
- VCS message logging
- VCS performance considerations
- Section VIII. Appendixes
Displaying the I/O fencing registration keys
You can display the keys that are currently assigned to the disks using the vxfenadm command.
The variables such as disk_7, disk_8, and disk_9 in the following procedure represent the disk names in your setup.
To display the I/O fencing registration keys
- To display the key for the disks, run the following command:
# vxfenadm -s disk_name
For example:
To display the key for the coordinator disk
/dev/sdx
from the system with node ID 1, enter the following command:# vxfenadm -s /dev/sdx key[1]: [Numeric Format]: 86,70,68,69,69,68,48,48 [Character Format]: VFDEED00 * [Node Format]: Cluster ID: 57069 Node ID: 0 Node Name: sys1
The -s option of vxfenadm displays all eight bytes of a key value in three formats. In the numeric format,
The first two bytes, represent the identifier VF, contains the ASCII value 86, 70.
The next four bytes contain the ASCII value of the cluster ID 57069 encoded in hex (0xDEED) which are 68, 69, 69, 68.
The remaining bytes contain the ASCII value of the node ID 0 (0x00) which are 48, 48. Node ID 1 would be 01 and node ID 10 would be 0A.
An asterisk before the Node Format indicates that the vxfenadm command is run from the node of a cluster where LLT is configured and is running.
To display the keys on a CVM parallel disk group:
# vxfenadm -s /dev/vx/rdmp/disk_7 Reading SCSI Registration Keys... Device Name: /dev/vx/rdmp/disk_7 Total Number Of Keys: 1 key[0]: [Numeric Format]: 66,80,71,82,48,48,48,49 [Character Format]: BPGR0001 [Node Format]: Cluster ID: unknown Node ID: 1 Node Name: sys2
To display the keys on a Cluster Server (VCS) failover disk group:
# vxfenadm -s /dev/vx/rdmp/disk_8 Reading SCSI Registration Keys... Device Name: /dev/vx/rdmp/disk_8 Total Number Of Keys: 1 key[0]: [Numeric Format]: 65,86,67,83,0,0,0,0 [Character Format]: AVCS [Node Format]: Cluster ID: unknown Node ID: 0 Node Name: sys1
- To display the keys that are registered in all the disks specified in a disk file:
# vxfenadm -s all -f disk_filename
For example:
To display all the keys on coordinator disks:
# vxfenadm -s all -f /etc/vxfentab Device Name: /dev/vx/rdmp/disk_9 Total Number Of Keys: 2 key[0]: [Numeric Format]: 86,70,70,68,57,52,48,49 [Character Format]: VFFD9401 * [Node Format]: Cluster ID: 64916 Node ID: 1 Node Name: sys2 key[1]: [Numeric Format]: 86,70,70,68,57,52,48,48 [Character Format]: VFFD9400 * [Node Format]: Cluster ID: 64916 Node ID: 0 Node Name: sys1
You can verify the cluster ID using the lltstat -C command, and the node ID using the lltstat -N command. For example:
# lltstat -C 57069
If the disk has keys that do not belong to a specific cluster, then the vxfenadm command cannot look up the node name for the node ID, and hence prints the node name as unknown. For example:
Device Name: /dev/vx/rdmp/disk_7 Total Number Of Keys: 1 key[0]: [Numeric Format]: 86,70,45,45,45,45,48,49 [Character Format]: VF----01 [Node Format]: Cluster ID: unknown Node ID: 1 Node Name: sys2
For disks with arbitrary format of keys, the vxfenadm command prints all the fields as unknown. For example:
[Numeric Format]: 65,66,67,68,49,50,51,45 [Character Format]: ABCD123- [Node Format]: Cluster ID: unknown Node ID: unknown Node Name: unknown