InfoScale™ 9.0 Virtualization Guide - Linux

Last Published:
Product(s): InfoScale & Storage Foundation (9.0)
Platform: Linux
  1. Section I. Overview of InfoScale solutions used in Linux virtualization
    1. Overview of supported products and technologies
      1.  
        Overview of the InfoScale Virtualization Guide
      2. About InfoScale support for Linux virtualization environments
        1.  
          About SmartIO in the Linux virtualized environment
        2.  
          About the SmartPool feature
      3. About KVM technology
        1.  
          Kernel-based Virtual Machine Terminology
        2.  
          VirtIO disk drives
      4.  
        About InfoScale deployments in OpenShift Virtualization environments
      5.  
        About InfoScale deployments in OpenStack environments
      6.  
        Virtualization use cases addressed by InfoScale
      7.  
        About virtual-to-virtual (in-guest) clustering and failover
  2. Section II. Implementing a basic KVM environment
    1. Getting started with basic KVM
      1.  
        Creating and launching a kernel-based virtual machine (KVM) host
      2.  
        RHEL-based KVM installation and usage
      3.  
        Setting up a kernel-based virtual machine (KVM) guest
      4.  
        About setting up KVM with InfoScale solutions
      5. InfoScale solutions configuration options for the kernel-based virtual machines environment
        1.  
          Dynamic Multi-Pathing in the KVM guest virtualized machine
        2.  
          DMP in the KVM host
        3.  
          SF in the virtualized guest machine
        4.  
          Enabling I/O fencing in KVM guests
        5.  
          SFCFSHA in the KVM host
        6.  
          DMP in the KVM host and guest virtual machine
        7.  
          DMP in the KVM host and SFHA in the KVM guest virtual machine
        8.  
          VCS in the KVM host
        9.  
          VCS in the guest
        10.  
          VCS in a cluster across virtual machine guests and physical machines
      6.  
        Installing InfoScale in a KVM environment
      7. Installing and configuring VCS in a kernel-based virtual machine (KVM) environment
        1.  
          How VCS manages virtual machine guests
    2. Configuring KVM resources
      1.  
        About KVM resources
      2. Configuring storage
        1.  
          Consistent storage mapping in the KVM environment
        2. Mapping devices to the guest
          1.  
            Mapping DMP meta-devices
          2.  
            Consistent naming across KVM Hosts
          3.  
            Mapping devices using paths
          4.  
            Mapping devices using volumes
          5.  
            Mapping devices using the virtio-scsi interface
        3.  
          Resizing devices
      3. Configuring networking
        1. Bridge network configuration
          1.  
            Host network configuration
          2.  
            Configuring guest network
        2.  
          Network configuration for VCS cluster across physical machines (PM-PM)
        3.  
          Standard bridge configuration
        4.  
          Network configuration for VM-VM cluster
  3. Section III. Implementing InfoScale an OpenStack environment
    1. Installing and configring resources in an OpenStack environment
      1.  
        About installing and configuring the OpenStack environment
      2.  
        About installing and configuring InfoScale on OpenStack VMs
  4. Section IV. Implementing Linux virtualization use cases
    1. Application visibility and device discovery
      1.  
        About storage to application visibility using InfoScale Operations Manager
      2.  
        About KVM virtualization discovery in InfoScale Operations Manager
      3.  
        About Microsoft Hyper-V virtualization discovery
      4.  
        Virtual machine discovery in Microsoft Hyper-V
      5.  
        Storage mapping discovery in Microsoft Hyper-V
    2. Server consolidation
      1.  
        Server consolidation
      2.  
        Implementing server consolidation for a simple workload
    3. Physical to virtual migration
      1.  
        Physical to virtual migration
      2.  
        How to implement physical to virtual migration (P2V)
    4. Simplified management
      1.  
        Simplified management
      2. Provisioning storage for a guest virtual machine
        1.  
          Provisioning VxVM volumes as data disks for VM guests
        2.  
          Provisioning VxVM volumes as boot disks for guest virtual machines
      3. Boot image management
        1.  
          Creating the boot disk group
        2.  
          Creating and configuring the golden image
        3.  
          Rapid Provisioning of virtual machines using the golden image
        4.  
          Storage Savings from space-optimized snapshots
    5. Application availability using Cluster Server
      1.  
        About application availability options
      2.  
        Cluster Server in a KVM environment architecture summary
      3.  
        Virtual to Virtual clustering and failover
      4.  
        I/O fencing support for Virtual to Virtual clustering
      5.  
        Virtual to Physical clustering and failover
      6.  
        Recommendations for improved resiliency of InfoScale clusters in virtualized environments
    6. Virtual machine availability
      1.  
        About virtual machine availability options
      2.  
        VCS in host monitoring the Virtual Machine as a resource
      3.  
        Validating the virtualization environment for virtual machine availability
    7. Virtual machine availability for live migration
      1.  
        About live migration
      2.  
        Live migration requirements
      3. About Flexible Storage Sharing
        1.  
          Flexible Storage Sharing use cases
        2.  
          Limitations of Flexible Storage Sharing
      4.  
        Configure Storage Foundation components as backend storage for virtual machines
      5.  
        Implementing live migration for virtual machine availability
    8. Virtual to virtual clustering in a Hyper-V environment
      1.  
        Installing and configuring Cluster Server with Microsoft Hyper-V virtual-to-virtual clustering
    9. Virtual to virtual clustering in an OVM environment
      1.  
        Installing and configuring Cluster Server for Oracle Virtual Machine (OVM) virtual-to-virtual clustering
      2.  
        Storage configuration for VCS support in Oracle Virtual Machine (OVM)
    10. Multi-tier business service support
      1.  
        About Virtual Business Services
      2.  
        Sample virtual business service configuration
      3. Recovery of Multi-tier Applications managed with Virtual Business Services in InfoScale Operations Manager
        1.  
          Service Group Management in Virtual Business Services
    11. Managing Docker containers with InfoScale Enterprise
      1.  
        About managing Docker containers with InfoScale Enterprise
      2. About the Cluster Server agents for Docker, Docker Daemon, and Docker Container
        1.  
          Supported software
        2.  
          How the agents make Docker containers highly available
        3.  
          Documentation reference
      3. Managing storage capacity for Docker containers
        1.  
          Provisioning storage for Docker infrastructure from the Arctera File System
        2. Provisioning data volumes for Docker containers
          1.  
            Provisioning storage on Arctera File System as data volumes for containers
          2.  
            Provisioning VxVM volumes as data volumes for containers
          3.  
            Creating a data volume container
        3. Automatically provision storage for Docker Containers
          1.  
            Installing the InfoScale Docker volume plugin
          2.  
            Configuring a disk group
          3.  
            Creating Docker containers with storage attached automatically
          4.  
            Avoid noisy neighbor problem by using Quality of Service support
          5.  
            Provision to create snapshots
          6.  
            Configuring Veritas volume plugin with Docker 1.12 Swarm mode
        4.  
          About using InfoScale Enterprise features to manage storage for containers
      4. Offline migration of Docker containers
        1.  
          Migrating Docker containers
        2.  
          Migrating Docker Daemons and Docker Containers
      5. Disaster recovery of volumes and file systems in Docker environments
        1.  
          Configuring Docker containers for disaster recovery
      6.  
        Limitations while managing Docker containers
  5. Section V. Reference
    1. Appendix A. Troubleshooting
      1.  
        InfoScale logs for CFS configurations in OpenStack environments
      2.  
        UDID mismatch in a CFS cluster in an OpenStack environment
      3.  
        Troubleshooting virtual machine live migration
      4.  
        The KVMGuest resource may remain in the online state even if storage connectivity to the host is lost
      5.  
        VCS initiates a virtual machine failover if a host on which a virtual machine is running loses network connectivity
    2. Appendix B. Sample configurations
      1. Sample configuration for a KVM environment
        1.  
          Sample configuration 1: Native LVM volumes are used to store the guest image
        2.  
          Sample configuration 2: VxVM volumes are used to store the guest image
        3.  
          Sample configuration 3: CVM-CFS is used to store the guest image
      2.  
        Sample configurations for OpenStack environments
    3. Appendix C. Where to find more information
      1.  
        InfoScale documentation
      2.  
        Linux virtualization documentation
      3.  
        Service and support
      4.  
        About Services and Operations Readiness Tools (SORT)

About InfoScale deployments in OpenShift Virtualization environments

InfoScale supports deployment within Kernel-based Virtual Machine (KVM) environments, which form the basis of its support for OpenShift Virtualization as well.

  • iSCSI requirement: When implementing InfoScale solutions in OpenShift Virtualization environments, iSCSI is the only supported storage protocol for accessing external storage.

  • Static IP mandate: For iSCSI connections to function reliably, the VMs must be configured with static IP addresses. Using dynamic IP addresses leads to connection disruptions if the addresses change during an operation, potentially causing data corruption or service outages.

Cluster communication using LLT

The InfoScale Cluster Server (VCS) component relies on Low Latency Transport (LLT) for inter-node heartbeating and for communication within the cluster.

  • LLT network requirement: The stability of the VCS cluster is critically dependent on reliable, low-latency network links between the cluster nodes (VMs).

  • Static IP mandate: Network interfaces within the VMs dedicated to LLT traffic must be configured with static IP addresses. Using dynamic IPs for LLT links is not supported because it compromises cluster integrity.

Jumbo Frames Support for LLT

Only Jumbo frames are supported for LLT communications in InfoScale in OpenShift Virtualization environments.

When running within OpenShift Virtualization VMs, the following special considerations apply:

  • OVS overhead: Within OpenShift Virtualization VMs, approximately 10 bytes are used by the Open vSwitch (OVS) infrastructure for each packet. Thus, when the underlying network is configured with the standard 1500 byte MTU, the effective MTU inside VMs is reduced to 1490 bytes.

  • MTU considerations: Due to the OVS overhead, enabling jumbo frames on the underlying physical network is essential for optimal LLT performance within VMs.

  • Jumbo frame configuration: If you implement jumbo frames, you must enable them at the following levels:

    • Physical switch infrastructure

    • Node network interfaces

    • OVS bridges

    • VM network interfaces

OpenShift networking for static IPs

OpenShift Virtualization uses the following mechanisms to provide additional network interfaces to VMs and to facilitate static IP configurations:

  • Node Network Configuration Policy (NNCP): For both iSCSI and LLT networks, NNCP must be used to configure the underlying node network interfaces with appropriate settings, including static IP assignments at the node level.

  • Network Attachment Definition (NAD): Secondary network interfaces for VMs - like those for dedicated iSCSI or LLT traffic - must be provisioned by creating NADs that reference the configurations established by NNCP.

  • VM static IP configuration: After the NADs are attached to VM definitions, the static IP addresses must be configured within the VMs. For both iSCSI connections and LLT communications, these IPs must remain fixed throughout the VM lifecycle to maintain storage connectivity and cluster integrity.

When implementing this configuration, remember that both iSCSI and LLT networks require careful planning to ensure that IP addresses remain consistent. Any changes to these addresses can disrupt storage access or cluster communications, potentially leading to data unavailability or cluster split-brain scenarios.