Volume Replicator 7.4.2 Administrator's Guide - Windows
- Understanding Volume Replicator
- About Volume Replicator
- Basic Volume Replicator terms
- Building blocks of Volume Replicator
- Understanding replication in the Volume Replicator environment
- Modes of replication
- Understanding data flow in Volume Replicator asynchronous mode
- Managing data during failure and recovery
- Replication concepts
- About using Volume Replicator as a disaster recovery tool
- Understanding how Volume Replicator logs writes to the Replicator Log
- Understanding replication settings for a Secondary
- Measures to protect log overflow and replication latency
- Pausing the replication
- Synchronizing the Secondary
- Understanding Volume Replicator support for FlashSnap
- About Synchronized Snapshots
- Understanding Bunker replication
- Understanding Volume Replicator Support for TCP Multi-Connection
- About Volume Replicator memory monitoring and control support
- About Volume Replicator Graphs
- Setting up replication
- Security considerations for Volume Replicator
- Setting up replication using the Setup Replicated Data Set wizard
- Setting up the Bunker RVG for replication
- Using the VEA Console for Volume Replication Operations
- Monitoring replication
- Interpreting the information in the Volume Replicator views
- Monitoring replication using the VEA console
- Checking replication performance using vxrlink stats
- Administering Volume Replicator
- Adding volumes
- Administering the RVG
- Administering replication
- Managing checkpoints
- Pausing replication using Volume Replicator
- Creating snapshots for the data volumes
- Creating synchronized snapshots using the VSS Snapshot wizard
- Administering Bunker replication
- Performing disaster recovery operation
- Deleting Volume Replicator objects
- Accessing data on Secondary host
- Performing automated system recovery (ASR)
- Alternative methods to synchronize the Secondary faster
- Obtaining statistical information through Volume Replicator Graphs
- Using the command line interface
- Administering the RDS using the vxrds command
- Resizing the data volumes
- Displaying the network statistics for the RLINK
- Administering the RVGs using the vxrvg command
- Displaying information using the vxprint command
- Creating snapshots using the vxsnap command
- Administering replicated volumes using the vxvol command
- Displaying and changing replication ports using the vrport command
- Administering the RVG using the vxedit
- Administering the RVG using the vxassist command
- Tuning Volume Replicator
- Examples: Using the command line
- Example 1: Setting up replication using the command line interface
- Example 3: Using Bunker node for disaster recovery
- Example 4: Using synchronized snapshots to restore data
- Configuring Volume Replicator in a VCS environment
- Components of a VCS cluster
- Illustrating a highly available Volume Replicator setup
- How the agents work
- Configuring the agents
- Working with existing replication service groups
- Configuring Volume Replicator with Hyper-V
- Advanced settings in Volume Replicator
- Troubleshooting Volume Replicator
- Recommendations and checks
- Recovering from problems in a firewall or NAT setup
- Recovering from problems during replication
- Error when configuring the VxSAS Service
- Operation time-out errors
- Problems when configuring Volume Replicator in a VCS environment
- Problems when setting performance counters
- Appendix A. Services and ports
- Appendix B. Using the vxrsync utility
- Appendix C. VR Advisor (VRAdvisor)
Bunker node workflow during normal operations
Under normal operating conditions, application writes are logged to the Primary Replicator Log and synchronously replicated to the Bunker node and any other synchronous Secondary sites. By default, the replication to the Bunker node is in the synchronous override mode. Thus, in the case of proper network availability the replication happens in synchronous mode. However, if the network becomes unavailable, replication to the Bunker Secondary happens asynchronously. During normal replication, the Bunker node functions as a Secondary. However, if a disaster occurs at the Primary, the Bunker node must be converted to a Primary and the data in its Replicator Log can be used to bring the Secondary up-to-date.
A write is completed to the application as soon as it is logged to the Primary Replicator Log, the Bunker Replicator Log, and the other synchronous Secondary Replicator Logs. Volume Replicator asynchronously writes the data to the Primary data volume and sends it to the asynchronous Secondary site. When the Secondary acknowledges the writes, the Replicator Log header is updated to indicate the status of the Secondary.
In a typical asynchronous replication setup, the network bandwidth is provisioned for average application write rate. Therefore, in the case of high write rates, the Bunker Replicator Log may contain some writes that are considered complete by the application but are still to be applied to the asynchronous Secondary. The network bandwidth for synchronous replication must therefore be provisioned for peak application write rate. The Replicator Log protection (srlprot) for the RLINK between the Primary and Bunker is set to off, by default. If for some reason the Primary replicator overflows for this RLINK, then the RLINK is detached.