Volume Replicator 7.4.2 Administrator's Guide - Windows
- Understanding Volume Replicator
- About Volume Replicator
- Basic Volume Replicator terms
- Building blocks of Volume Replicator
- Understanding replication in the Volume Replicator environment
- Modes of replication
- Understanding data flow in Volume Replicator asynchronous mode
- Managing data during failure and recovery
- Replication concepts
- About using Volume Replicator as a disaster recovery tool
- Understanding how Volume Replicator logs writes to the Replicator Log
- Understanding replication settings for a Secondary
- Measures to protect log overflow and replication latency
- Pausing the replication
- Synchronizing the Secondary
- Understanding Volume Replicator support for FlashSnap
- About Synchronized Snapshots
- Understanding Bunker replication
- Understanding Volume Replicator Support for TCP Multi-Connection
- About Volume Replicator memory monitoring and control support
- About Volume Replicator Graphs
- Setting up replication
- Security considerations for Volume Replicator
- Setting up replication using the Setup Replicated Data Set wizard
- Setting up the Bunker RVG for replication
- Using the VEA Console for Volume Replication Operations
- Monitoring replication
- Interpreting the information in the Volume Replicator views
- Monitoring replication using the VEA console
- Checking replication performance using vxrlink stats
- Administering Volume Replicator
- Adding volumes
- Administering the RVG
- Administering replication
- Managing checkpoints
- Pausing replication using Volume Replicator
- Creating snapshots for the data volumes
- Creating synchronized snapshots using the VSS Snapshot wizard
- Administering Bunker replication
- Performing disaster recovery operation
- Deleting Volume Replicator objects
- Accessing data on Secondary host
- Performing automated system recovery (ASR)
- Alternative methods to synchronize the Secondary faster
- Obtaining statistical information through Volume Replicator Graphs
- Using the command line interface
- Administering the RDS using the vxrds command
- Resizing the data volumes
- Displaying the network statistics for the RLINK
- Administering the RVGs using the vxrvg command
- Displaying information using the vxprint command
- Creating snapshots using the vxsnap command
- Administering replicated volumes using the vxvol command
- Displaying and changing replication ports using the vrport command
- Administering the RVG using the vxedit
- Administering the RVG using the vxassist command
- Tuning Volume Replicator
- Examples: Using the command line
- Example 1: Setting up replication using the command line interface
- Example 3: Using Bunker node for disaster recovery
- Example 4: Using synchronized snapshots to restore data
- Configuring Volume Replicator in a VCS environment
- Components of a VCS cluster
- Illustrating a highly available Volume Replicator setup
- How the agents work
- Configuring the agents
- Working with existing replication service groups
- Configuring Volume Replicator with Hyper-V
- Advanced settings in Volume Replicator
- Troubleshooting Volume Replicator
- Recommendations and checks
- Recovering from problems in a firewall or NAT setup
- Recovering from problems during replication
- Error when configuring the VxSAS Service
- Operation time-out errors
- Problems when configuring Volume Replicator in a VCS environment
- Problems when setting performance counters
- Appendix A. Services and ports
- Appendix B. Using the vxrsync utility
- Appendix C. VR Advisor (VRAdvisor)
Data Change Map
Data Change Map (DCM) is a bitmap representing the data difference between Primary and Secondary volumes.
Volume Replicator uses DCM for the following:
Performing automatic initial synchronization for the data volumes
Enabling Replicator Log overflow protection when the log protection mode is set to DCM or AutoDCM
Resynchronizing the Primary data volumes using the snapshot
Performing fast-failback
Each data volume in the RVG must have a valid DCM log associated with it before the DCM can be used. Volume Replicator calculates the DCM size based on the size of the volume. The default size of the DCM ranges from 1KB to 256KB depending on the size of the volume. However, you can specify the size of the DCM to a maximum of 2 MB.
Note:
If you need to resize the data volumes, then Veritas recommends that you also recreate the DCM proportionate to the new size of the data volume.
When DCM becomes active, the administrator initiates a resynchronization operation and causes Volume Replicator to incrementally synchronize the Secondary with the Primary by looking up the bitmap. Each bit in it represents a region whose contents are different between the Primary and the Secondary. Typically, a region consists of multiples of volume blocks, where each block size is 512 bytes.
Note:
The Secondary is inconsistent during the period the DCM resynchronization is in progress because the write-order fidelity is not preserved.
After the resynchronization is complete, the Secondary RVG is consistent and replication resumes with write-order fidelity preserved.