Volume Replicator 7.4.2 Administrator's Guide - Windows
- Understanding Volume Replicator
- About Volume Replicator
- Basic Volume Replicator terms
- Building blocks of Volume Replicator
- Understanding replication in the Volume Replicator environment
- Modes of replication
- Understanding data flow in Volume Replicator asynchronous mode
- Managing data during failure and recovery
- Replication concepts
- About using Volume Replicator as a disaster recovery tool
- Understanding how Volume Replicator logs writes to the Replicator Log
- Understanding replication settings for a Secondary
- Measures to protect log overflow and replication latency
- Pausing the replication
- Synchronizing the Secondary
- Understanding Volume Replicator support for FlashSnap
- About Synchronized Snapshots
- Understanding Bunker replication
- Understanding Volume Replicator Support for TCP Multi-Connection
- About Volume Replicator memory monitoring and control support
- About Volume Replicator Graphs
- Setting up replication
- Security considerations for Volume Replicator
- Setting up replication using the Setup Replicated Data Set wizard
- Setting up the Bunker RVG for replication
- Using the VEA Console for Volume Replication Operations
- Monitoring replication
- Interpreting the information in the Volume Replicator views
- Monitoring replication using the VEA console
- Checking replication performance using vxrlink stats
- Administering Volume Replicator
- Adding volumes
- Administering the RVG
- Administering replication
- Managing checkpoints
- Pausing replication using Volume Replicator
- Creating snapshots for the data volumes
- Creating synchronized snapshots using the VSS Snapshot wizard
- Administering Bunker replication
- Performing disaster recovery operation
- Deleting Volume Replicator objects
- Accessing data on Secondary host
- Performing automated system recovery (ASR)
- Alternative methods to synchronize the Secondary faster
- Obtaining statistical information through Volume Replicator Graphs
- Using the command line interface
- Administering the RDS using the vxrds command
- Resizing the data volumes
- Displaying the network statistics for the RLINK
- Administering the RVGs using the vxrvg command
- Displaying information using the vxprint command
- Creating snapshots using the vxsnap command
- Administering replicated volumes using the vxvol command
- Displaying and changing replication ports using the vrport command
- Administering the RVG using the vxedit
- Administering the RVG using the vxassist command
- Tuning Volume Replicator
- Examples: Using the command line
- Example 1: Setting up replication using the command line interface
- Example 3: Using Bunker node for disaster recovery
- Example 4: Using synchronized snapshots to restore data
- Configuring Volume Replicator in a VCS environment
- Components of a VCS cluster
- Illustrating a highly available Volume Replicator setup
- How the agents work
- Configuring the agents
- Working with existing replication service groups
- Configuring Volume Replicator with Hyper-V
- Advanced settings in Volume Replicator
- Troubleshooting Volume Replicator
- Recommendations and checks
- Recovering from problems in a firewall or NAT setup
- Recovering from problems during replication
- Error when configuring the VxSAS Service
- Operation time-out errors
- Problems when configuring Volume Replicator in a VCS environment
- Problems when setting performance counters
- Appendix A. Services and ports
- Appendix B. Using the vxrsync utility
- Appendix C. VR Advisor (VRAdvisor)
Sizing the Replicator Log
The size of the Replicator Log is critical to the performance of replication. In the asynchronous mode of replication, due to network latency, the writes may be pending on the Primary Replicator Log. In this case, the Primary Replicator Log may overflow if the number of pending writes exceed the number of updates it can store.
When the Replicator Log overflows for a particular Secondary, the RLINK corresponding to that Secondary is marked STALE and becomes out of date until a complete resynchronization with the Primary is performed. Because resynchronization is a time-consuming process and during this time the data on the Secondary cannot be used, it is important to avoid Replicator Log overflows.
Thus, the Replicator Log size needs to be large enough to satisfy the following constraints:
It must not overflow for asynchronous RLINKs during periods of peak usage when replication over the RLINK may fall far behind the application.
It must not overflow while a Secondary RVG is synchronized.
It must not overflow while a Secondary RVG is restored.
It must not overflow during extended outages (network or Secondary node).