InfoScale™ 9.0 Virtualization Guide - Linux

Last Published:
Product(s): InfoScale & Storage Foundation (9.0)
Platform: Linux
  1. Section I. Overview of InfoScale solutions used in Linux virtualization
    1. Overview of supported products and technologies
      1.  
        Overview of the InfoScale Virtualization Guide
      2. About InfoScale support for Linux virtualization environments
        1.  
          About SmartIO in the Linux virtualized environment
        2.  
          About the SmartPool feature
      3. About KVM technology
        1.  
          Kernel-based Virtual Machine Terminology
        2.  
          VirtIO disk drives
      4.  
        About InfoScale deployments in OpenShift Virtualization environments
      5.  
        About InfoScale deployments in OpenStack environments
      6.  
        Virtualization use cases addressed by InfoScale
      7.  
        About virtual-to-virtual (in-guest) clustering and failover
  2. Section II. Implementing a basic KVM environment
    1. Getting started with basic KVM
      1.  
        Creating and launching a kernel-based virtual machine (KVM) host
      2.  
        RHEL-based KVM installation and usage
      3.  
        Setting up a kernel-based virtual machine (KVM) guest
      4.  
        About setting up KVM with InfoScale solutions
      5. InfoScale solutions configuration options for the kernel-based virtual machines environment
        1.  
          Dynamic Multi-Pathing in the KVM guest virtualized machine
        2.  
          DMP in the KVM host
        3.  
          SF in the virtualized guest machine
        4.  
          Enabling I/O fencing in KVM guests
        5.  
          SFCFSHA in the KVM host
        6.  
          DMP in the KVM host and guest virtual machine
        7.  
          DMP in the KVM host and SFHA in the KVM guest virtual machine
        8.  
          VCS in the KVM host
        9.  
          VCS in the guest
        10.  
          VCS in a cluster across virtual machine guests and physical machines
      6.  
        Installing InfoScale in a KVM environment
      7. Installing and configuring VCS in a kernel-based virtual machine (KVM) environment
        1.  
          How VCS manages virtual machine guests
    2. Configuring KVM resources
      1.  
        About KVM resources
      2. Configuring storage
        1.  
          Consistent storage mapping in the KVM environment
        2. Mapping devices to the guest
          1.  
            Mapping DMP meta-devices
          2.  
            Consistent naming across KVM Hosts
          3.  
            Mapping devices using paths
          4.  
            Mapping devices using volumes
          5.  
            Mapping devices using the virtio-scsi interface
        3.  
          Resizing devices
      3. Configuring networking
        1. Bridge network configuration
          1.  
            Host network configuration
          2.  
            Configuring guest network
        2.  
          Network configuration for VCS cluster across physical machines (PM-PM)
        3.  
          Standard bridge configuration
        4.  
          Network configuration for VM-VM cluster
  3. Section III. Implementing InfoScale an OpenStack environment
    1. Installing and configring resources in an OpenStack environment
      1.  
        About installing and configuring the OpenStack environment
      2.  
        About installing and configuring InfoScale on OpenStack VMs
  4. Section IV. Implementing Linux virtualization use cases
    1. Application visibility and device discovery
      1.  
        About storage to application visibility using InfoScale Operations Manager
      2.  
        About KVM virtualization discovery in InfoScale Operations Manager
      3.  
        About Microsoft Hyper-V virtualization discovery
      4.  
        Virtual machine discovery in Microsoft Hyper-V
      5.  
        Storage mapping discovery in Microsoft Hyper-V
    2. Server consolidation
      1.  
        Server consolidation
      2.  
        Implementing server consolidation for a simple workload
    3. Physical to virtual migration
      1.  
        Physical to virtual migration
      2.  
        How to implement physical to virtual migration (P2V)
    4. Simplified management
      1.  
        Simplified management
      2. Provisioning storage for a guest virtual machine
        1.  
          Provisioning VxVM volumes as data disks for VM guests
        2.  
          Provisioning VxVM volumes as boot disks for guest virtual machines
      3. Boot image management
        1.  
          Creating the boot disk group
        2.  
          Creating and configuring the golden image
        3.  
          Rapid Provisioning of virtual machines using the golden image
        4.  
          Storage Savings from space-optimized snapshots
    5. Application availability using Cluster Server
      1.  
        About application availability options
      2.  
        Cluster Server in a KVM environment architecture summary
      3.  
        Virtual to Virtual clustering and failover
      4.  
        I/O fencing support for Virtual to Virtual clustering
      5.  
        Virtual to Physical clustering and failover
      6.  
        Recommendations for improved resiliency of InfoScale clusters in virtualized environments
    6. Virtual machine availability
      1.  
        About virtual machine availability options
      2.  
        VCS in host monitoring the Virtual Machine as a resource
      3.  
        Validating the virtualization environment for virtual machine availability
    7. Virtual machine availability for live migration
      1.  
        About live migration
      2.  
        Live migration requirements
      3. About Flexible Storage Sharing
        1.  
          Flexible Storage Sharing use cases
        2.  
          Limitations of Flexible Storage Sharing
      4.  
        Configure Storage Foundation components as backend storage for virtual machines
      5.  
        Implementing live migration for virtual machine availability
    8. Virtual to virtual clustering in a Hyper-V environment
      1.  
        Installing and configuring Cluster Server with Microsoft Hyper-V virtual-to-virtual clustering
    9. Virtual to virtual clustering in an OVM environment
      1.  
        Installing and configuring Cluster Server for Oracle Virtual Machine (OVM) virtual-to-virtual clustering
      2.  
        Storage configuration for VCS support in Oracle Virtual Machine (OVM)
    10. Multi-tier business service support
      1.  
        About Virtual Business Services
      2.  
        Sample virtual business service configuration
      3. Recovery of Multi-tier Applications managed with Virtual Business Services in InfoScale Operations Manager
        1.  
          Service Group Management in Virtual Business Services
    11. Managing Docker containers with InfoScale Enterprise
      1.  
        About managing Docker containers with InfoScale Enterprise
      2. About the Cluster Server agents for Docker, Docker Daemon, and Docker Container
        1.  
          Supported software
        2.  
          How the agents make Docker containers highly available
        3.  
          Documentation reference
      3. Managing storage capacity for Docker containers
        1.  
          Provisioning storage for Docker infrastructure from the Arctera File System
        2. Provisioning data volumes for Docker containers
          1.  
            Provisioning storage on Arctera File System as data volumes for containers
          2.  
            Provisioning VxVM volumes as data volumes for containers
          3.  
            Creating a data volume container
        3. Automatically provision storage for Docker Containers
          1.  
            Installing the InfoScale Docker volume plugin
          2.  
            Configuring a disk group
          3.  
            Creating Docker containers with storage attached automatically
          4.  
            Avoid noisy neighbor problem by using Quality of Service support
          5.  
            Provision to create snapshots
          6.  
            Configuring Veritas volume plugin with Docker 1.12 Swarm mode
        4.  
          About using InfoScale Enterprise features to manage storage for containers
      4. Offline migration of Docker containers
        1.  
          Migrating Docker containers
        2.  
          Migrating Docker Daemons and Docker Containers
      5. Disaster recovery of volumes and file systems in Docker environments
        1.  
          Configuring Docker containers for disaster recovery
      6.  
        Limitations while managing Docker containers
  5. Section V. Reference
    1. Appendix A. Troubleshooting
      1.  
        InfoScale logs for CFS configurations in OpenStack environments
      2.  
        UDID mismatch in a CFS cluster in an OpenStack environment
      3.  
        Troubleshooting virtual machine live migration
      4.  
        The KVMGuest resource may remain in the online state even if storage connectivity to the host is lost
      5.  
        VCS initiates a virtual machine failover if a host on which a virtual machine is running loses network connectivity
    2. Appendix B. Sample configurations
      1. Sample configuration for a KVM environment
        1.  
          Sample configuration 1: Native LVM volumes are used to store the guest image
        2.  
          Sample configuration 2: VxVM volumes are used to store the guest image
        3.  
          Sample configuration 3: CVM-CFS is used to store the guest image
      2.  
        Sample configurations for OpenStack environments
    3. Appendix C. Where to find more information
      1.  
        InfoScale documentation
      2.  
        Linux virtualization documentation
      3.  
        Service and support
      4.  
        About Services and Operations Readiness Tools (SORT)

Storage Savings from space-optimized snapshots

With the large number of virtual machines housed per physical server, the number of boot images used on a single server is also significant. A single bare-metal Linux boot image needs around 3 GB of space at a minimum. Installing software stacks and application binaries on top of that requires additional space typically resulting in using around 6 GB of space for each virtual machine that houses a database application.

When a user provisions a new virtual machine, the boot image can be a full copy or a space-optimized snapshot. Using a full copy results in highly inefficient use of storage. Not only is storage consumed to house identical boot images, storage is also consumed in making the boot images highly available (mirror across enclosures) as well in their backup.This large amount of highly available, high performance storage is very expensive, and likely to eliminate the cost advantages that server virtualization would otherwise provide. To add to it, backup and recovery of such capacity is also an expensive task.

In order to address the above issue, Arctera recommends the use of space-optimized snapshots of the gold image as boot images of the various VM guests. Space-optimized snapshots do not make a full copy of the data in the gold image, rather they work on the copy-on-write principle where only the changed blocks are stored locally. This set of changed blocks is called a Cache Object and it is stored in a repository for all such space-optimized snapshots, called the Cache Object Store, which is backed by physical storage. The Cache Object offers a significant storage space reduction, typically occupying a 5-20% storage footprint, relative to the parent volume (the gold image volume in this case). The same Cache Object Store can be used to store changed blocks for multiple snapshot volumes.

Each Snapshot held in the Cache Object Store contains only changes made to the gold image to support that installation's boot environment. Hence, to achieve the best possible storage reduction, install software on data disks rather than root file systems and limit as many changes as possible to the gold image operating files (i.e., system, hosts, passwd, etc.).