InfoScale™ 9.0 Storage Foundation Cluster File System High Availability Configuration and Upgrade Guide - Solaris
- Section I. Introduction to SFCFSHA
- Introducing Storage Foundation Cluster File System High Availability
- Section II. Configuration of SFCFSHA
- Preparing to configure
- Preparing to configure SFCFSHA clusters for data integrity
- About planning to configure I/O fencing
- Setting up the CP server
- Configuring the CP server manually
- Configuring SFCFSHA
- Configuring a secure cluster node by node
- Verifying and updating licenses on the system
- Configuring SFCFSHA clusters for data integrity
- Setting up disk-based I/O fencing using installer
- Setting up server-based I/O fencing using installer
- Performing an automated SFCFSHA configuration using response files
- Performing an automated I/O fencing configuration using response files
- Configuring CP server using response files
- Manually configuring SFCFSHA clusters for data integrity
- Setting up disk-based I/O fencing manually
- Setting up server-based I/O fencing manually
- Configuring server-based fencing on the SFCFSHA cluster manually
- Setting up non-SCSI-3 fencing in virtual environments manually
- Setting up majority-based I/O fencing manually
- Section III. Upgrade of SFCFSHA
- Planning to upgrade SFCFSHA
- Preparing to upgrade SFCFSHA
- Performing a full upgrade of SFCFSHA using the installer
- Performing a rolling upgrade of SFCFSHA
- Performing a phased upgrade of SFCFSHA
- About phased upgrade
- Performing a phased upgrade using the product installer
- Performing an automated SFCFSHA upgrade using response files
- Upgrading Volume Replicator
- Upgrading VirtualStore
- Upgrading SFCFSHA using Boot Environment upgrade
- Performing post-upgrade tasks
- Planning to upgrade SFCFSHA
- Section IV. Post-configuration tasks
- Section V. Configuration of disaster recovery environments
- Section VI. Adding and removing nodes
- Adding a node to SFCFSHA clusters
- Adding the node to a cluster manually
- Setting up the node to run in secure mode
- Adding a node using response files
- Configuring server-based fencing on the new node
- Removing a node from SFCFSHA clusters
- Adding a node to SFCFSHA clusters
- Section VII. Configuration and Upgrade reference
- Appendix A. Installation scripts
- Appendix B. Configuration files
- Appendix C. Configuring the secure shell or the remote shell for communications
- Appendix D. High availability agent information
- Appendix E. Sample SFCFSHA cluster setup diagrams for CP server-based I/O fencing
- Appendix F. Reconciling major/minor numbers for NFS shared disks
- Appendix G. Configuring LLT over UDP
- Using the UDP layer for LLT
- Manually configuring LLT over UDP using IPv4
- Using the UDP layer of IPv6 for LLT
- Manually configuring LLT over UDP using IPv6
Recommended CP server configurations
Following are the recommended CP server configurations:
Multiple application clusters use three CP servers as their coordination points
See Figure: Three CP servers connecting to multiple application clusters.
Multiple application clusters use a single CP server and single or multiple pairs of coordinator disks (two) as their coordination points
See Figure: Single CP server with two coordinator disks for each application cluster.
Multiple application clusters use a single CP server as their coordination point
This single coordination point fencing configuration must use a highly available CP server that is configured on an SFHA cluster as its coordination point.
See Figure: Single CP server connecting to multiple application clusters.
Warning:
In a single CP server fencing configuration, arbitration facility is not available during a failover of the CP server in the SFHA cluster. So, if a network partition occurs on any application cluster during the CP server failover, the application cluster is brought down.
Although the recommended CP server configurations use three coordination points, you can use more than three coordination points for I/O fencing. Ensure that the total number of coordination points you use is an odd number. In a configuration where multiple application clusters share a common set of CP server coordination points, the application cluster as well as the CP server use a Universally Unique Identifier (UUID) to uniquely identify an application cluster.
Figure: Three CP servers connecting to multiple application clusters displays a configuration using three CP servers that are connected to multiple application clusters.
Figure: Single CP server with two coordinator disks for each application cluster displays a configuration using a single CP server that is connected to multiple application clusters with each application cluster also using two coordinator disks.
Figure: Single CP server connecting to multiple application clusters displays a configuration using a single CP server that is connected to multiple application clusters.
See Configuration diagrams for setting up server-based I/O fencing.