InfoScale™ 9.0 Storage and Availability Management for DB2 Databases - AIX, Linux

Last Published:
Product(s): InfoScale & Storage Foundation (9.0)
Platform: AIX,Linux
  1. Section I. Storage Foundation High Availability (SFHA) management solutions for DB2 databases
    1. Overview of Storage Foundation for Databases
      1.  
        Introducing Storage Foundation High Availability (SFHA) Solutions for DB2
      2. About Veritas File System
        1.  
          About the Veritas File System intent log
        2.  
          About extents
        3.  
          About file system disk layouts
      3.  
        About Volume Manager
      4.  
        About Dynamic Multi-Pathing (DMP)
      5.  
        About Cluster Server
      6.  
        About Cluster Server agents
      7.  
        About InfoScale Operations Manager
      8.  
        Feature support for DB2 across Veritas InfoScale 9.0 products
      9.  
        Use cases for Veritas InfoScale products
  2. Section II. Deploying DB2 with InfoScale products
    1. Deployment options for DB2 in a Storage Foundation environment
      1.  
        DB2 deployment options in a Veritas InfoScale environment
      2.  
        DB2 on a single system with Storage Foundation
      3.  
        DB2 on a single system with off-host in a Storage Foundation environment
      4.  
        DB2 in a highly available cluster with Storage Foundation High Availability
      5.  
        DB2 in a parallel cluster with SF Cluster File System HA
      6.  
        Deploying DB2 and Storage Foundation in a virtualization environment
      7.  
        Deploying DB2 with Storage Foundation SmartMove and Thin Provisioning
    2. Deploying DB2 with Storage Foundation
      1.  
        Tasks for deploying DB2 databases
      2.  
        About selecting a volume layout for deploying DB2
      3. Setting up disk group for deploying DB2
        1.  
          Disk group configuration guidelines for deploying DB2
      4. Creating volumes for deploying DB2
        1.  
          Volume configuration guidelines for deploying DB2
      5. Creating VxFS file system for deploying DB2
        1.  
          File system creation guidelines for deploying DB2
      6.  
        Mounting the file system for deploying DB2
      7.  
        Installing DB2 and creating database
    3. Deploying DB2 in an off-host configuration with Storage Foundation
      1.  
        Requirements for an off-host database configuration
    4. Deploying DB2 with High Availability
      1.  
        Tasks for deploying DB2 in an HA configuration
      2.  
        Configuring VCS to make the database highly available
  3. Section III. Configuring Storage Foundation for Database (SFDB) tools
    1. Configuring and managing the Storage Foundation for Databases repository database
      1.  
        About the Storage Foundation for Databases (SFDB) repository
      2.  
        Requirements for Storage Foundation for Databases (SFDB) tools
      3.  
        Storage Foundation for Databases (SFDB) tools availability
      4. Configuring the Storage Foundation for Databases (SFDB) tools repository
        1.  
          Locations for the SFDB repository
      5.  
        Updating the Storage Foundation for Databases (SFDB) repository after adding a node
      6.  
        Updating the Storage Foundation for Databases (SFDB) repository after removing a node
      7.  
        Removing the Storage Foundation for Databases (SFDB) repository
    2. Configuring authentication for Storage Foundation for Databases (SFDB) tools
      1.  
        Configuring vxdbd for SFDB tools authentication
      2.  
        Adding nodes to a cluster that is using authentication for SFDB tools
      3.  
        Authorizing users to run SFDB commands
  4. Section IV. Improving DB2 database performance
    1. About database accelerators
      1.  
        About Arctera InfoScale™ product components database accelerators
    2. Improving database performance with Quick I/O
      1. About Quick I/O
        1.  
          How Quick I/O improves database performance
      2.  
        Tasks for setting up Quick I/O in a database environment
      3.  
        Preallocating space for Quick I/O files using the setext command
      4.  
        Accessing regular VxFS files as Quick I/O files
      5.  
        Converting DB2 containers to Quick I/O files
      6.  
        About sparse files
      7.  
        Displaying Quick I/O status and file attributes
      8.  
        Extending a Quick I/O file
      9.  
        Monitoring tablespace free space with DB2 and extending tablespace containers
      10.  
        Recreating Quick I/O files after restoring a database
      11.  
        Disabling Quick I/O
    3. Improving DB2 database performance with Veritas Concurrent I/O
      1. About Concurrent I/O
        1.  
          How Concurrent I/O works
      2. Tasks for enabling and disabling Concurrent I/O
        1.  
          Enabling Concurrent I/O for DB2
        2.  
          Disabling Concurrent I/O for DB2
  5. Section V. Using point-in-time copies
    1. Understanding point-in-time copy methods
      1.  
        About point-in-time copies
      2.  
        When to use point-in-time copies
      3.  
        About Storage Foundation point-in-time copy technologies
      4.  
        Point-in-time copy solutions supported by SFDB tools
      5.  
        About snapshot modes supported by Storage Foundation for Databases (SFDB) tools
      6. Volume-level snapshots
        1.  
          Persistent FastResync of volume snapshots
        2.  
          Data integrity in volume snapshots
        3.  
          Third-mirror break-off snapshots
      7. Storage Checkpoints
        1.  
          How Storage Checkpoints differ from snapshots
        2. How a Storage Checkpoint works
          1.  
            Copy-on-write
          2. Storage Checkpoint visibility
            1.  
              Storage Checkpoints and 64-bit inode numbers
        3.  
          About Database Rollbacks using Storage Checkpoints
        4.  
          Storage Checkpoints and Rollback process
        5.  
          Storage Checkpoint space management considerations
    2. Considerations for DB2 point-in-time copies
      1.  
        Considerations for DB2 database layouts
      2.  
        Supported DB2 configurations
    3. Administering third-mirror break-off snapshots
      1. Database FlashSnap for cloning
        1.  
          Database FlashSnap advantages
      2. Preparing hosts and storage for Database FlashSnap
        1. Setting up hosts
          1.  
            Database FlashSnap off-host configuration
        2.  
          Creating a snapshot mirror of a volume or volume set used by the database
      3.  
        Creating a clone of a database by using Database FlashSnap
      4.  
        Resynchronizing mirror volumes with primary volumes
      5.  
        Cloning a database on the secondary host
    4. Administering Storage Checkpoints
      1.  
        About Storage Checkpoints
      2. Database Storage Checkpoints for recovery
        1.  
          Advantages and limitations of Database Storage Checkpoints
      3.  
        Creating a Database Storage Checkpoint
      4.  
        Deleting a Database Storage Checkpoint
      5.  
        Mounting a Database Storage Checkpoint
      6.  
        Unmounting a Database Storage Checkpoint
      7.  
        Creating a database clone using a Database Storage Checkpoint
      8.  
        Restoring database from a Database Storage Checkpoint
      9.  
        Gathering data for offline-mode Database Storage Checkpoints
    5. Backing up and restoring with Netbackup in an SFHA environment
      1.  
        About Veritas NetBackup
      2.  
        About using Veritas NetBackup for backup and restore for DB2
      3. Using NetBackup in an SFHA Solutions product environment
        1.  
          Clustering a NetBackup Master Server
        2.  
          Backing up and recovering a VxVM volume using NetBackup
        3.  
          Recovering a VxVM volume using NetBackup
  6. Section VI. Optimizing storage costs for DB2
    1. Understanding storage tiering with SmartTier
      1. About SmartTier
        1.  
          About VxFS multi-volume file systems
        2.  
          About VxVM volume sets
        3.  
          About volume tags
        4.  
          SmartTier file management
        5.  
          SmartTier sub-file object management
      2.  
        SmartTier in a High Availability (HA) environment
    2. SmartTier use cases for DB2
      1.  
        SmartTier use cases for DB2
      2.  
        Relocating old archive logs to tier two storage using SmartTier
      3.  
        Relocating inactive tablespaces or segments to tier two storage
      4.  
        Relocating active indexes to premium storage
      5.  
        Relocating all indexes to premium storage
  7. Section VII. Storage Foundation for Databases administrative reference
    1. Storage Foundation for Databases command reference
      1.  
        vxsfadm command reference
      2. FlashSnap reference
        1.  
          FlashSnap configuration parameters
        2.  
          FlashSnap supported operations
      3. Database Storage Checkpoints reference
        1.  
          Database Storage Checkpoints configuration parameters
        2.  
          Database Storage Checkpoints supported operations
    2. Tuning for Storage Foundation for Databases
      1.  
        Additional documentation
      2. About tuning Veritas Volume Manager (VxVM)
        1.  
          About obtaining volume I/O statistics
      3. About tuning VxFS
        1. How monitoring free space works
          1.  
            About monitoring fragmentation
        2.  
          How tuning VxFS I/O parameters works
        3.  
          About tunable VxFS I/O parameters
        4.  
          About obtaining file I/O statistics using the Quick I/O interface
        5.  
          About I/O statistics data
        6.  
          About I/O statistics
      4. About tuning DB2 databases
        1.  
          DB2_USE_PAGE_CONTAINER_TAG
        2.  
          DB2_PARALLEL_IO
        3.  
          PREFETCHSIZE and EXTENTSIZE
        4.  
          INTRA_PARALLEL
        5.  
          NUM_IOCLEANERS
        6.  
          NUM_IOSERVERS
        7.  
          CHNGPGS_THRESH
        8.  
          Table scans
        9.  
          Asynchronous I/O
        10.  
          Buffer pools
        11.  
          Memory allocation
        12.  
          TEMPORARY tablespaces
        13.  
          DMS containers
        14.  
          Data, indexes, and logs
        15.  
          Database statistics
      5.  
        About tuning AIX Virtual Memory Manager
    3. Troubleshooting SFDB tools
      1. About troubleshooting Storage Foundation for Databases (SFDB) tools
        1.  
          Running scripts for engineering support analysis for SFDB tools
        2.  
          Storage Foundation for Databases (SFDB) tools log files
      2. About the vxdbd daemon
        1.  
          Starting and stopping vxdbd
        2.  
          Configuring listening port for the vxdbd daemon
        3.  
          Limiting vxdbd resource usage
        4.  
          Configuring encryption ciphers for vxdbd
      3.  
        Troubleshooting vxdbd
      4. Resources for troubleshooting SFDB tools
        1.  
          SFDB logs
        2.  
          SFDB error messages
        3.  
          SFDB repository and repository files
      5.  
        Upgrading Storage Foundation for Databases (SFDB) tools from 5.0.x to 9.0 (2184482)

Creating a snapshot mirror of a volume or volume set used by the database

With Database FlashSnap, you can mirror the volumes used by the database to a separate set of disks, and those mirrors can be used to create a snapshot of the database. These snapshot volumes can be split and placed in a separate disk group. This snapshot disk group can be imported on a separate host, which shares the same storage with the primary host. The snapshot volumes can be resynchronized periodically with the primary volumes to get recent changes of the datafiles. If the primary datafiles become corrupted, you can quickly restore them from the snapshot volumes. Snapshot volumes can be used for a variety of purposes, including backup and recovery, and creating a clone database.

You must create snapshot mirrors for all of the volumes used by the database datafiles before you can create a snapshot of the database. This section describes the procedure used to create snapshot mirrors of volumes.

Use the vxsnap command to create a snapshot mirror or synchronize a snapshot mirror.

Prerequisites

  • You must be logged in as superuser (root).

  • The disk group must be version 110 or later.

    For more information on disk group versions, see the vxdg(1M) online manual page.

  • Be sure that a data change object (DCO) and a DCO log volume are associated with the volume for which you are creating the snapshot.

  • Persistent FastResync must be enabled on the existing database volumes and disks must be assigned for the snapshot volumes.

    FastResync optimizes mirror resynchronization by tracking updates to stored data that have been missed by a mirror. When a snapshot mirror is reattached to its primary volumes, only the updates that were missed need to be re-applied to resynchronize it. FastResync increases the efficiency of the volume snapshot mechanism to better support operations such as backup and decision support.

    For detailed information about FastResync, see the Storage Foundation Administrator's Guide.

  • Snapshot mirrors and their associated DCO logs should be on different disks than the original mirror plexes, and should be configured correctly for creating snapshots by the system administrator.

  • When creating a snapshot mirror, create the snapshot on a separate controller and separate disks from the primary volume.

  • Allocate separate volumes for archive logs.

Usage Notes

  • Create a separate disk group for DB2 database-related files.

  • Do not share volumes between DB2 database files and other software.

  • Resynchronization speed varies based on the amount of data changed in both the primary and snapshot volumes during the break-off time.

  • Do not share any disks between the original mirror and the snapshot mirror.

  • Snapshot mirrors for datafiles and archive logs should be created so that they do not share any disks with the data of the original volumes. If they are not created in this way, the VxVM disk group cannot be split and, as a result, Database FlashSnap will not work.

Note:

Database FlashSnap commands support third-mirror break-off snapshots only. The snapshot mirror must be in the SNAPDONE state.

The following sample procedure is for existing volumes without existing snapshot plexes or associated snapshot volumes. In this procedure, volume_name is the name of either a volume or a volume set.

Note:

You must be logged in as superuser (root) to issue the commands in the following procedure.

To create a snapshot mirror of a volume or volume set

  1. To prepare the volume for being snapshot, use the vxsnap prepare command:
    # vxsnap -g diskgroup prepare volume \
    alloc="storage_attribute ..."

    The vxsnap prepare command automatically creates a DCO and DCO volumes and associates them with the volume, and enables Persistent FastResync on the volume. Persistent FastResync is also set automatically on any snapshots that are generated from a volume on which this feature is enabled.

    For enabling persistent FastResync on a volume either from the command line or from within a script, use the vxsnap prepare command as described above.

  2. To verify that FastResync is enabled on the volume, use the vxprint command:
    # vxprint -g diskgroup -F%fastresync volume_name

    This returns on if FastResync is on. Otherwise, it returns off.

  3. To verify that a DCO and DCO log volume are attached to the volume, use the vxprint command:
    # vxprint -g diskgroup -F%hasdcolog volume_name

    This returns on if a DCO and DCO log volume are attached to the volume. Otherwise, it returns off.

  4. Create a mirror of a volume:
    # vxsnap -g diskgroup addmir volume_name alloc=diskname

    Example of creating 3 mirrors for a particular volume:

    # vxsnap -g diskgroup addmir datavol \
    nmirror=3 alloc=disk1,disk2,disk3
  5. List the available mirrors:
    # vxprint -g diskgroup -F%name -e"pl_v_name in \"volume_name\""
  6. Enable database FlashSnap to locate the correct mirror plexes when creating snapshots:

    • Set the dbed_flashsnap tag for the data plex you want to use for breaking off the mirror. You can choose any tag name you like, but it needs to match the SNAPSHOT_PLEX_TAG attribute specified in the configuration or snapplan.

        # vxedit -g diskgroup set putil2=dbed_flashsnap plex_name
    • Verify that the dbed_flashsnap tag has been set to the desired data plex:

        # vxprint -g diskgroup -F%name -e"pl_v_name in \
        \"volume_name\" && p2 in \"dbed_flashsnap\""
    If you require a backup of the data in the snapshot, use an appropriate utility or operating system command to copy the contents of the snapshot to tape or to some other backup medium.