Please enter search query.
Search <book_title>...
InfoScale™ 9.0 Storage Foundation Cluster File System High Availability Configuration and Upgrade Guide - Linux
Last Published:
2025-04-18
Product(s):
InfoScale & Storage Foundation (9.0)
Platform: Linux
- Section I. Introduction to SFCFSHA
- Introducing Storage Foundation Cluster File System High Availability
- Section II. Configuration of SFCFSHA
- Preparing to configure
- Preparing to configure SFCFSHA clusters for data integrity
- About planning to configure I/O fencing
- Setting up the CP server
- Configuring the CP server manually
- Configuring SFCFSHA
- Configuring a secure cluster node by node
- Completing the SFCFSHA configuration
- Verifying and updating licenses on the system
- Configuring SFCFSHA clusters for data integrity
- Setting up disk-based I/O fencing using installer
- Setting up server-based I/O fencing using installer
- Performing an automated SFCFSHA configuration using response files
- Performing an automated I/O fencing configuration using response files
- Configuring CP server using response files
- Manually configuring SFCFSHA clusters for data integrity
- Setting up disk-based I/O fencing manually
- Setting up server-based I/O fencing manually
- Configuring server-based fencing on the SFCFSHA cluster manually
- Setting up non-SCSI-3 fencing in virtual environments manually
- Setting up majority-based I/O fencing manually
- Section III. Upgrade of SFCFSHA
- Planning to upgrade SFCFSHA
- Preparing to upgrade SFCFSHA
- Performing a full upgrade of SFCFSHA using the installer
- Performing a rolling upgrade of SFCFSHA
- Performing a phased upgrade of SFCFSHA
- About phased upgrade
- Performing a phased upgrade using the product installer
- Performing an automated SFCFSHA upgrade using response files
- Upgrading SFCFSHA using YUM
- Upgrading Volume Replicator
- Upgrading VirtualStore
- Performing post-upgrade tasks
- Planning to upgrade SFCFSHA
- Section IV. Post-configuration tasks
- Section V. Configuration of disaster recovery environments
- Section VI. Adding and removing nodes
- Adding a node to SFCFSHA clusters
- Adding the node to a cluster manually
- Setting up the node to run in secure mode
- Adding a node using response files
- Configuring server-based fencing on the new node
- Removing a node from SFCFSHA clusters
- Adding a node to SFCFSHA clusters
- Section VII. Configuration and Upgrade reference
- Appendix A. Installation scripts
- Appendix B. Configuration files
- Appendix C. Configuring the secure shell or the remote shell for communications
- Appendix D. High availability agent information
- Appendix E. Sample SFCFSHA cluster setup diagrams for CP server-based I/O fencing
- Appendix F. Configuring LLT over UDP
- Using the UDP layer for LLT
- Manually configuring LLT over UDP using IPv4
- Using the UDP layer of IPv6 for LLT
- Manually configuring LLT over UDP using IPv6
- About configuring LLT over UDP multiport
- Appendix G. Using LLT over RDMA
- Configuring LLT over RDMA
- Configuring RDMA over an Ethernet network
- Configuring RDMA over an InfiniBand network
- Tuning system performance
- Manually configuring LLT over RDMA
- Troubleshooting LLT over RDMA
Enable RDMA over Converged Ethernet (RoCE)
The following steps are applicable only on a system installed with RHEL Linux or supported RHEL-compatible distributions. On SUSE Linux, the RDMA is enabled by default.
- Make sure that the SFHA stack is stopped and the LLT and GAB modules are not loaded.
- Skip this step if you are on a RHEL 7 or supported RHEL-compatible distributions. Alternatively, create or modify the
/etc/modprobe.d/mlx4.conf
configuration file and add the value options mlx4_core hpn=1 to the file. This enables RDMA over Converged Ethernet (RoCE) in Mellanox drivers (installed by default with the operating system). - Verify whether the Mellanox drivers are loaded.
# lsmod | grep mlx4_en
# lsmod | grep mlx4_core
- Unload the Mellanox drivers if the drivers are loaded.
# rmmod mlx4_ib
# rmmod mlx4_en
# rmmod mlx4_core