InfoScale™ 9.0 Cluster Server Administrator's Guide - Windows
- Section I. Clustering concepts and terminology
- Introducing Cluster Server
- About Cluster Server
- About cluster control guidelines
- About the physical components of VCS
- Logical components of VCS
- Types of service groups
- Agent classifications
- About cluster control, communications, and membership
- About security services
- About cluster topologies
- VCS configuration concepts
- Introducing Cluster Server
- Section II. Administration - Putting VCS to work
- About the VCS user privilege model
- Getting started with VCS
- Administering the cluster from the command line
- About administering VCS from the command line
- Stopping the VCS engine and related processes
- About managing VCS configuration files
- About managing VCS users from the command line
- About querying VCS
- About administering service groups
- Modifying service group attributes
- About administering resources
- About administering resource types
- About administering clusters
- Configuring resources and applications in VCS
- About configuring resources and applications
- About Virtual Business Services
- About Intelligent Resource Monitoring (IMF)
- About fast failover
- How VCS monitors storage components
- About storage configuration
- About configuring network resources
- About configuring file shares
- About configuring IIS sites
- About configuring services
- Before you configure a service using the GenericService agent
- About configuring processes
- About configuring Microsoft Message Queuing (MSMQ)
- About configuring the infrastructure and support agents
- About configuring applications using the Application Configuration Wizard
- Adding resources to a service group
- About application monitoring on single-node clusters
- Configuring the service group in a non-shared storage environment
- About the VCS Application Manager utility
- About testing resource failover using virtual fire drills
- Modifying the cluster configuration
- Section III. Administration - Beyond the basics
- Controlling VCS behavior
- VCS behavior on resource faults
- About controlling VCS behavior at the service group level
- Customized behavior diagrams
- VCS behavior for resources that support the intentional offline functionality
- About controlling VCS behavior at the resource level
- Service group workload management
- Sample configurations depicting workload management
- The role of service group dependencies
- VCS event notification
- VCS event triggers
- List of event triggers
- Controlling VCS behavior
- Section IV. Cluster configurations for disaster recovery
- Connecting clusters–Creating global clusters
- VCS global clusters: The building blocks
- About global cluster management
- About serialization - The Authority attribute
- Prerequisites for global clusters
- Setting up a global cluster
- Configuring replication resources in VCS
- About IPv6 support with global clusters
- About cluster faults
- About setting up a disaster recovery fire drill
- Test scenario for a multi-tiered environment
- Administering global clusters from Cluster Manager (Java console)
- Administering global clusters from the command line
- About global querying in a global cluster setup
- Administering clusters in global cluster setup
- Setting up replicated data clusters
- Connecting clusters–Creating global clusters
- Section V. Troubleshooting and performance
- VCS performance considerations
- How cluster components affect performance
- How cluster operations affect performance
- VCS performance consideration when a system panics
- VCS agent statistics
- Troubleshooting and recovery for VCS
- VCS message logging
- Handling network failure
- Troubleshooting VCS startup
- Troubleshooting service groups
- Troubleshooting and recovery for global clusters
- VCS utilities
- VCS performance considerations
- Section VI. Appendixes
- Appendix A. VCS user privileges—administration matrices
- Appendix B. Cluster and system states
- Appendix C. VCS attributes
- Appendix D. Configuring LLT over UDP
- Appendix E. Handling concurrency violation in any-to-any configurations
- Appendix F. Accessibility and VCS
- Appendix G. Executive Order logging
How the VCS engine (HAD) affects performance
The VCS engine, HAD, runs as a daemon process. By default it runs as a high-priority process, which ensures it sends heartbeats to kernel components and responds quickly to failures. HAD runs logging activities in a separate thread to reduce the performance impact on the engine due to logging.
VCS runs in a loop waiting for messages from agents, ha commands, the graphical user interfaces, and the other systems. Under normal conditions, the number of messages processed by HAD is few. They mainly include heartbeat messages from agents and update messages from the global counter. VCS may exchange additional messages when an event occurs, but typically overhead is nominal even during events. Note that this depends on the type of event; for example, a resource fault may involve taking the group offline on one system and bringing it online on another system. A system fault invokes failing over all online service groups on the faulted system.
To continuously monitor VCS status, use the VCS graphical user interfaces or the command hastatus. Both methods maintain connection to VCS and register for events, and are more efficient compared to running commands like hastatus -summary or hasys in a loop.
The number of clients connected to VCS can affect performance if several events occur simultaneously. For example, if five GUI processes are connected to VCS, VCS sends state updates to all five. Maintaining fewer client connections to VCS reduces this overhead.