Veritas InfoScale™ 7.4 Solutions Guide - Linux
- Section I. Introducing Veritas InfoScale
- Section II. Solutions for Veritas InfoScale products
- Solutions for Veritas InfoScale products
- Solutions for Veritas InfoScale products
- Section III. Stack-level migration to IPv6 or dual stack
- Section IV. Improving database performance
- Overview of database accelerators
- Improving database performance with Veritas Concurrent I/O
- Improving database performance with atomic write I/O
- Section V. Using point-in-time copies
- Understanding point-in-time copy methods
- Backing up and recovering
- Preserving multiple point-in-time copies
- Online database backups
- Backing up on an off-host cluster file system
- Database recovery using Storage Checkpoints
- Backing up and recovering in a NetBackup environment
- Off-host processing
- Creating and refreshing test environments
- Creating point-in-time copies of files
- Section VI. Maximizing storage utilization
- Optimizing storage tiering with SmartTier
- Optimizing storage with Flexible Storage Sharing
- Optimizing storage tiering with SmartTier
- Section VII. Migrating data
- Understanding data migration
- Offline migration from LVM to VxVM
- Offline conversion of native file system to VxFS
- Online migration of a native file system to the VxFS file system
- VxFS features not available during online migration
- Migrating storage arrays
- Migrating data between platforms
- Overview of the Cross-Platform Data Sharing (CDS) feature
- CDS disk format and disk groups
- Setting up your system to use Cross-platform Data Sharing (CDS)
- Maintaining your system
- Disk tasks
- Disk group tasks
- Displaying information
- File system considerations
- Specifying the migration target
- Using the fscdsadm command
- Maintaining the list of target operating systems
- Migrating a file system on an ongoing basis
- Converting the byte order of a file system
- Migrating from Oracle ASM to Veritas File System
- Section VIII. Just in time availability solution for vSphere
- Section IX. Veritas InfoScale 4K sector device support solution
- Section X. Reference
About VxFS multi-volume file systems
Multi-volume file systems are file systems that occupy two or more virtual volumes. The collection of volumes is known as a volume set, and is made up of disks or disk array LUNs belonging to a single Veritas Volume Manager (VxVM) disk group. A multi-volume file system presents a single name space, making the existence of multiple volumes transparent to users and applications. Each volume retains a separate identity for administrative purposes, making it possible to control the locations to which individual files are directed.
This feature is available only on file systems meeting the following requirements:
The minimum disk group version is 140.
The minimum file system layout version is 7 for file level SmartTier.
The minimum file system layout version is 8 for sub-file level SmartTier.
To convert your existing VxFS system to a VxFS multi-volume file system, you must convert a single volume to a volume set.
The VxFS volume administration utility (fsvoladm utility) can be used to administer VxFS volumes. The fsvoladm utility performs administrative tasks, such as adding, removing, resizing, encapsulating volumes, and setting, clearing, or querying flags on volumes in a specified Veritas File System.
See the fsvoladm (1M) manual page for additional information about using this utility.