InfoScale™ 9.0 Storage Foundation Cluster File System High Availability Administrator's Guide - Solaris
- Section I. Introducing Storage Foundation Cluster File System High Availability
- Overview of Storage Foundation Cluster File System High Availability
- About Veritas File System
- How Dynamic Multi-Pathing works
- How DMP works
- How Volume Manager works
- How Volume Manager works with the operating system
- How Volume Manager handles storage management
- Volume layouts in Veritas Volume Manager
- Online relayout
- Volume resynchronization
- Dirty region logging
- Volume snapshots
- FastResync
- How VxVM handles hardware clones or snapshots
- How Veritas File System works
- How Storage Foundation Cluster File System High Availability works
- About Storage Foundation Cluster File System High Availability architecture
- About Veritas File System features supported in cluster file systems
- About single network link and reliability
- About I/O fencing
- About preventing data corruption with I/O fencing
- About I/O fencing components
- About server-based I/O fencing
- About secure communication between the SFCFSHA cluster and CP server
- How Cluster Volume Manager works
- Overview of clustering
- Cluster Volume Manager (CVM) tolerance to storage connectivity failures
- Storage disconnectivity and CVM disk detach policies
- CVM initialization and configuration
- Dirty region logging in cluster environments
- Multiple host failover configurations
- About Flexible Storage Sharing
- Overview of Storage Foundation Cluster File System High Availability
- Section II. Provisioning storage
- Provisioning new storage
- Advanced allocation methods for configuring storage
- Customizing allocation behavior
- Using rules to make volume allocation more efficient
- Understanding persistent attributes
- Customizing disk classes for allocation
- Specifying allocation constraints for vxassist operations with the use clause and the require clause
- Creating volumes of a specific layout
- Customizing allocation behavior
- Creating and mounting VxFS file systems
- Creating a VxFS file system
- Mounting a VxFS file system
- tmplog mount option
- ioerror mount option
- largefiles and nolargefiles mount options
- Resizing a file system
- Monitoring free space
- Extent attributes
- Section III. Administering multi-pathing with DMP
- Administering Dynamic Multi-Pathing
- Discovering and configuring newly added disk devices
- About discovering disks and dynamically adding disk arrays
- How to administer the Device Discovery Layer
- Administering DMP using the vxdmpadm utility
- Gathering and displaying I/O statistics
- Specifying the I/O policy
- Managing DMP devices for the ZFS root pool
- Discovering and configuring newly added disk devices
- Dynamic Reconfiguration of devices
- Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool
- Manually reconfiguring a LUN online that is under DMP control
- Managing devices
- Displaying disk information
- Changing the disk device naming scheme
- Simple or nopriv disks with enclosure-based naming
- About the Array Volume Identifier (AVID) attribute
- Adding and removing disks
- Event monitoring
- Administering Dynamic Multi-Pathing
- Section IV. Administering Storage Foundation Cluster File System High Availability
- Administering Storage Foundation Cluster File System High Availability and its components
- Administering CFS
- About the mount, fsclustadm, and fsadm commands
- When the CFS primary node fails
- About Snapshots on SFCFSHA
- Administering VCS
- Administering CVM
- About setting cluster node preferences for master failover
- About changing the CVM master manually
- Importing disk groups as shared
- Administering Flexible Storage Sharing
- Administering ODM
- About administering I/O fencing
- About the vxfentsthdw utility
- Testing the coordinator disk group using the -c option of vxfentsthdw
- About the vxfenadm utility
- About the vxfenclearpre utility
- About the vxfenswap utility
- About administering the coordination point server
- About migrating between disk-based and server-based fencing configurations
- Migrating between fencing configurations using response files
- About the vxfentsthdw utility
- Administering SFCFSHA global clusters
- Using Clustered NFS
- Understanding how Clustered NFS works
- Configure and unconfigure Clustered NFS
- Reconciling major and minor numbers for NFS shared disks
- Administering Clustered NFS
- Samples for configuring a Clustered NFS
- Using Common Internet File System
- Deploying Oracle with Clustered NFS
- Administering sites and remote mirrors
- About sites and remote mirrors
- Fire drill - testing the configuration
- Changing the site name
- Administering the Remote Mirror configuration
- Failure and recovery scenarios
- Administering Storage Foundation Cluster File System High Availability and its components
- Section V. Optimizing I/O performance
- Section VI. Veritas Extension for Oracle Disk Manager
- Using Veritas Extension for Oracle Disk Manager
- About Oracle Disk Manager
- About Oracle Disk Manager and Oracle Managed Files
- Using Cached ODM
- Using Veritas Extension for Oracle Disk Manager
- Section VII. Using Point-in-time copies
- Understanding point-in-time copy methods
- When to use point-in-time copies
- About Storage Foundation point-in-time copy technologies
- Volume-level snapshots
- Storage Checkpoints
- About FileSnaps
- About snapshot file systems
- Administering volume snapshots
- Traditional third-mirror break-off snapshots
- Full-sized instant snapshots
- Creating instant snapshots
- Adding an instant snap DCO and DCO volume
- Controlling instant snapshot synchronization
- Creating instant snapshots
- Cascaded snapshots
- Adding a version 0 DCO and DCO volume
- Administering Storage Checkpoints
- Storage Checkpoint administration
- Administering FileSnaps
- Administering snapshot file systems
- Understanding point-in-time copy methods
- Section VIII. Optimizing storage with Storage Foundation Cluster File System High Availability
- Understanding storage optimization solutions in Storage Foundation Cluster File System High Availability
- Migrating data from thick storage to thin storage
- Maintaining Thin Storage with Thin Reclamation
- Reclamation of storage on thin reclamation arrays
- Identifying thin and thin reclamation LUNs
- InfoScale 4K sector device support solution
- Section IX. Maximizing storage utilization
- Understanding storage tiering with SmartTier
- Creating and administering volume sets
- Multi-volume file systems
- Features implemented using multi-volume file system (MVFS) support
- Adding a volume to and removing a volume from a multi-volume file system
- Volume encapsulation
- Load balancing
- Administering SmartTier
- About SmartTier
- Placement classes
- Administering placement policies
- File placement policy rules
- Multiple criteria in file placement policy rule statements
- Using SmartTier with solid state disks
- Sub-file relocation
- Administering hot-relocation
- How hot-relocation works
- Moving relocated subdisks
- Compressing files
- About compressing files
- Use cases for compressing files
- Section X. Administering and protecting storage
- Managing volumes and disk groups
- Rules for determining the default disk group
- Moving volumes or disks
- Monitoring and controlling tasks
- Performing online relayout
- Adding a mirror to a volume
- Managing disk groups
- Disk group versions
- Displaying disk group information
- Importing a disk group
- Moving disk groups between systems
- Importing a disk group containing hardware cloned disks
- Handling conflicting configuration copies
- Destroying a disk group
- Backing up and restoring disk group configuration data
- Managing plexes and subdisks
- Decommissioning storage
- Rootability
- Encapsulating a disk
- Rootability
- Administering an encapsulated boot disk
- Quotas
- Using Veritas File System quotas
- File Change Log
- Managing volumes and disk groups
- Section XI. Reference
- Appendix A. Reverse path name lookup
- Appendix B. Tunable parameters
- Tuning the VxFS file system
- Methods to change Dynamic Multi-Pathing tunable parameters
- Tunable parameters for VxVM
- Methods to change Veritas Volume Manager tunable parameters
- About LLT tunable parameters
- About GAB tunable parameters
- About VXFEN tunable parameters
- Appendix C. Command reference
- Appendix D. Creating a starter database
- Appendix E. Executive Order logging
Configuring latency threshold tunable for metro/geo array
The Metro/Geo cluster system has visibility for both paths, local and remote. Dynamic Multi-Pathing (DMP) A/A array IO policy distributes IO evenly across both of these paths, local and remote. Also, Metro/Geo support serves IO through the local path if the remote paths have higher latency than latency_threshold_difference.
Tunable lets you manage the parameter values of latency_threshold_difference. The default value of the latency_threshold_difference of the tunable parameter is 200 µs. The latency_threshold_difference tunable is valid only for the METRO type of array.
You can assign a new latency threshold difference value to a specified enclosure. Using tunable option you can increase or decrease the latency_threshold_difference value.
The following is the syntax for the tuning latency_threshold_difference:
# vxdmpadm getattr {enclosure enc-name}
\ latency_threshold_difference
Use the following command vxdmpadm getattr that displays the latency_threshold_difference value that is set for an enclosure emc0:
# vxdmpadm getattr enclosure emc0 latency_threshold_difference ENCLR_NAME default CURRENT ============================================ emc0 200 200
To set new value, you can use the following syntax for the specified enclosure:
# vxdmpadm setattr enclosure <enclr-name>
{name=<value> | \ latency_threshold_difference=<value>}
The following example shows the vxdmpadm setattr command to set the latency_threshold_difference value that is set for an enclosure emc0:
# vxdmpadm setattr enclosure emc0 latency_threshold_difference=300
Note:
The latency_threshold_difference is applicable for enclosure only.
DMP serves IO with local paths only if remote path has higher IO latency, then marks it as STANDBY.
#vxdmpadm getsubpaths dmpnodename=emc0_00d2
Typical output from thevxdmpadm getsubpathscommand is as follows:
NAME STATE[A] PATH-TYPE[M] CLTR-NAME ENCLR-TYPE ENCLR-NAME ATTRS PRIORITY =========================================================================== Sdar ENABLED - c9 EMC emc0 STANDBY - Sdbj ENABLED(A) - c9 EMC emc0 - - Sdh ENABLED(A) - c9 EMC emc0 - - Sdz ENABLED - c9 EMC emc0 STANDBY -
See the vxdmpadm (1M) manual page.