InfoScale™ 9.0 Storage Foundation Cluster File System High Availability Configuration and Upgrade Guide - AIX
- Section I. Introduction to SFCFSHA
- Introducing Storage Foundation Cluster File System High Availability
- Section II. Configuration of SFCFSHA
- Preparing to configure
- Preparing to configure SFCFSHA clusters for data integrity
- About planning to configure I/O fencing
- Setting up the CP server
- Configuring the CP server manually
- Configuring SFCFSHA
- Configuring a secure cluster node by node
- Verifying and updating licenses on the system
- Configuring SFCFSHA clusters for data integrity
- Setting up disk-based I/O fencing using installer
- Setting up server-based I/O fencing using installer
- Performing an automated SFCFSHA configuration using response files
- Performing an automated I/O fencing configuration using response files
- Configuring CP server using response files
- Manually configuring SFCFSHA clusters for data integrity
- Setting up disk-based I/O fencing manually
- Setting up server-based I/O fencing manually
- Configuring server-based fencing on the SFCFSHA cluster manually
- Setting up non-SCSI-3 fencing in virtual environments manually
- Setting up majority-based I/O fencing manually
- Section III. Upgrade of SFCFSHA
- Planning to upgrade SFCFSHA
- Preparing to upgrade SFCFSHA
- Upgrading the operating system
- Performing a full upgrade of SFCFSHA using the installer
- Performing a rolling upgrade of SFCFSHA
- Performing a phased upgrade of SFCFSHA
- About phased upgrade
- Performing a phased upgrade using the product installer
- Performing an automated SFCFSHA upgrade using response files
- Upgrading Volume Replicator
- Performing post-upgrade tasks
- Planning to upgrade SFCFSHA
- Section IV. Post-configuration tasks
- Section V. Configuration of disaster recovery environments
- Section VI. Adding and removing nodes
- Adding a node to SFCFSHA clusters
- Adding the node to a cluster manually
- Setting up the node to run in secure mode
- Adding a node using response files
- Configuring server-based fencing on the new node
- Removing a node from SFCFSHA clusters
- Adding a node to SFCFSHA clusters
- Section VII. Configuration and Upgrade reference
- Appendix A. Support for AIX Live Update
- Appendix B. Installation scripts
- Appendix C. Configuration files
- Appendix D. Configuring the secure shell or the remote shell for communications
- Appendix E. High availability agent information
- Appendix F. Sample SFCFSHA cluster setup diagrams for CP server-based I/O fencing
- Appendix G. Changing NFS server major numbers for VxVM volumes
- Appendix H. Configuring LLT over UDP
- Using the UDP layer for LLT
- Manually configuring LLT over UDP using IPv4
- Using the UDP layer of IPv6 for LLT
- Manually configuring LLT over UDP using IPv6
About deciding the order of existing coordination points
You can decide the order in which coordination points can participate in a race during a network partition. In a network partition scenario, I/O fencing attempts to contact coordination points for membership arbitration based on the order that is set in the vxfentab
file.
When I/O fencing is not able to connect to the first coordination point in the sequence it goes to the second coordination point and so on. To avoid a cluster panic, the surviving subcluster must win majority of the coordination points. So, the order must begin with the coordination point that has the best chance to win the race and must end with the coordination point that has the least chance to win the race.
For fencing configurations that use a mix of coordination point servers and coordination disks, you can specify either coordination point servers before coordination disks or disks before servers.
Note:
Disk-based fencing does not support setting the order of existing coordination points.
Considerations to decide the order of coordination points
Choose the coordination points based on their chances to gain membership on the cluster during the race and hence gain control over a network partition. In effect, you have the ability to save a partition.
First in the order must be the coordination point that has the best chance to win the race. The next coordination point you list in the order must have relatively lesser chance to win the race. Complete the order such that the last coordination point has the least chance to win the race.