Veritas InfoScale™ 8.0.2 Storage and Availability Management for Oracle Databases - AIX, Linux, Solaris
- Section I. Storage Foundation High Availability (SFHA) management solutions for Oracle databases
- Overview of Storage Foundation for Databases
- About Veritas File System
- Overview of Storage Foundation for Databases
- Section II. Deploying Oracle with Veritas InfoScale products
- Deployment options for Oracle in a Storage Foundation environment
- Deploying Oracle with Storage Foundation
- Setting up disk group for deploying Oracle
- Creating volumes for deploying Oracle
- Creating VxFS file system for deploying Oracle
- Deploying Oracle in an off-host configuration with Storage Foundation
- Deploying Oracle with High Availability
- Deploying Oracle with Volume Replicator (VVR) for disaster recovery
- Deployment options for Oracle in a Storage Foundation environment
- Section III. Configuring Storage Foundation for Database (SFDB) tools
- Configuring and managing the Storage Foundation for Databases repository database
- Configuring the Storage Foundation for Databases (SFDB) tools repository
- Configuring authentication for Storage Foundation for Databases (SFDB) tools
- Configuring and managing the Storage Foundation for Databases repository database
- Section IV. Improving Oracle database performance
- About database accelerators
- Improving database performance with Veritas Extension for Oracle Disk Manager
- About Oracle Disk Manager in the Veritas InfoScale products environment
- Improving database performance with Veritas Cached Oracle Disk Manager
- About Cached ODM in SFHA environment
- Configuring Cached ODM in SFHA environment
- Administering Cached ODM settings with Cached ODM Advisor in SFHA environment
- Generating reports of candidate datafiles by using Cached ODM Advisor in SFHA environment
- Generating summary reports of historical activity by using Cached ODM Advisor in SFHA environment
- Generating reports of candidate datafiles by using Cached ODM Advisor in SFHA environment
- Improving database performance with Quick I/O
- About Quick I/O
- Improving database performance with Cached Quick I/O
- Section V. Using point-in-time copies
- Understanding point-in-time copy methods
- Volume-level snapshots
- About Reverse Resynchronization in volume-level snapshots (FlashSnap)
- Storage Checkpoints
- About FileSnaps
- Considerations for Oracle point-in-time copies
- Administering third-mirror break-off snapshots
- Administering space-optimized snapshots
- Creating a clone of an Oracle database by using space-optimized snapshots
- Administering Storage Checkpoints
- Database Storage Checkpoints for recovery
- Administering FileSnap snapshots
- Backing up and restoring with Netbackup in an SFHA environment
- Understanding point-in-time copy methods
- Section VI. Optimizing storage costs for Oracle
- Understanding storage tiering with SmartTier
- Configuring and administering SmartTier
- Configuring SmartTier for Oracle
- Optimizing database storage using SmartTier for Oracle
- Extent balancing in a database environment using SmartTier for Oracle
- Configuring SmartTier for Oracle
- SmartTier use cases for Oracle
- Compressing files and databases to optimize storage costs
- Using the Compression Advisor tool
- Section VII. Managing Oracle disaster recovery
- Section VIII. Storage Foundation for Databases administrative reference
- Storage Foundation for Databases command reference
- Tuning for Storage Foundation for Databases
- About tuning Veritas Volume Manager (VxVM)
- About tuning VxFS
- About tuning Oracle databases
- About tuning Solaris for Oracle
- Troubleshooting SFDB tools
- About troubleshooting Storage Foundation for Databases (SFDB) tools
- About the vxdbd daemon
- Resources for troubleshooting SFDB tools
- Manual recovery of Oracle database
- Storage Foundation for Databases command reference for the releases prior to 6.0
- Preparing storage for Database FlashSnap
- About creating database snapshots
- FlashSnap commands
- Creating a snapplan (dbed_vmchecksnap)
- Validating a snapplan (dbed_vmchecksnap)
- Displaying, copying, and removing a snapplan (dbed_vmchecksnap)
- Creating a snapshot (dbed_vmsnap)
- Backing up the database from snapshot volumes (dbed_vmclonedb)
- Cloning a database (dbed_vmclonedb)
- Guidelines for Oracle recovery
- Database Storage Checkpoint Commands
- Section IX. Reference
- Appendix A. VCS Oracle agents
- Appendix B. Sample configuration files for clustered deployments
- Appendix C. Database FlashSnap status information
- Appendix D. Using third party software to back up files
Creating a shared cache object
If you need to create several instant space-optimized snapshots for the volumes in a disk group, you may find it more convenient to create a single shared cache object in the disk group rather than a separate cache object for each snapshot.
To create a shared cache object
Decide on the following characteristics that you want to allocate to the cache volume that underlies the cache object:
The size of the cache volume should be sufficient to record changes to the parent volumes during the interval between snapshot refreshes. A suggested value is 10% of the total size of the parent volumes for a refresh interval of 24 hours.
If redundancy is a desired characteristic of the cache volume, it should be mirrored. This increases the space that is required for the cache volume in proportion to the number of mirrors that it has.
If the cache volume is mirrored, space is required on at least as many disks as it has mirrors. These disks should not be shared with the disks used for the parent volumes. The disks should also be chosen to avoid impacting I/O performance for critical volumes, or hindering disk group split and join operations.
- Having decided on its characteristics, use the vxassist command to create the volume that is to be used for the cache volume. The following example creates a mirrored cache volume, cachevol, with size 1GB in the disk group, mydg, on the disks disk16 and disk17:
# vxassist -g mydg make cachevol 1g layout=mirror \ init=active disk16 disk17
The attribute init=active is specified to make the cache volume immediately available for use.
- Use the vxmake cache command to create a cache object on top of the cache volume that you created in the previous step:
# vxmake [-g diskgroup] cache cache_object \ cachevolname=volume [regionsize=size] [autogrow=on] \ [highwatermark=hwmk] [autogrowby=agbvalue] \ [maxautogrow=maxagbvalue]]
If you specify the region size, it must be a power of 2, and be greater than or equal to 16KB (16k). If not specified, the region size of the cache is set to 64KB.
Note:
All space-optimized snapshots that share the cache must have a region size that is equal to or an integer multiple of the region size set on the cache. Snapshot creation also fails if the original volume's region size is smaller than the cache's region size.
If the cache is not allowed to grow in size as required, specify autogrow=off. By default, the ability to automatically grow the cache is turned on.
In the following example, the cache object, cobjmydg, is created over the cache volume, cachevol, the region size of the cache is set to 32KB, and the autogrow feature is enabled:
# vxmake -g mydg cache cobjmydg cachevolname=cachevol \ regionsize=32k autogrow=on
- Having created the cache object, use the following command to enable it:
# vxcache [-g diskgroup] start cache_object
For example to start the cache object, cobjmydg:
# vxcache -g mydg start cobjmydg