InfoScale™ 9.0 Storage Foundation Administrator's Guide - Windows
- Overview
- Setup and configuration
- Function overview
- About the client console for Storage Foundation
- Recommendations for caching-enabled disks
- Configure basic disks (Optional)
- About creating dynamic disk groups
- About creating dynamic volumes
- Set desired preferences
- Using the GUI to manage your storage
- Working with disks, partitions, and volumes
- Adding storage
- Disk tasks
- Remove a disk from the computer
- Veritas Disk ID (VDID)
- General Partition/Volume tasks
- Mount a volume at an empty folder (Drive path)
- Expand a dynamic volume
- Shrink a dynamic volume
- Basic disk and volume tasks
- Automatic discovery of SSD devices and manual classification as SSD
- Volume Manager space allocation is SSD aware
- Dealing with disk groups
- Disk groups overview
- Delete a dynamic disk group
- Detaching and attaching dynamic disks
- Importing and deporting dynamic disk groups
- Partitioned shared storage with private dynamic disk group protection
- Fast failover in clustered environments
- iSCSI SAN support
- Settings for monitoring objects
- Event monitoring and notification
- Event notification
- Configuring Automatic volume growth
- Standard features for adding fault tolerance
- Performance tuning
- FlashSnap
- FlashSnap components
- FastResync
- Snapshot commands
- Dynamic Disk Group Split and Join
- Dynamic disk group join
- Using Dynamic Disk Group Split and Join with a cluster on shared storage
- Dynamic Disk Group Split and Join troubleshooting tips
- Fast File Resync
- Volume Shadow Copy Service (VSS)
- Using the VSS snapshot wizards with Enterprise Vault
- Using the VSS snapshot wizards with Microsoft SQL
- Copy on Write (COW)
- Using the VSS COW snapshot wizards with Microsoft SQL
- Configuring data caching with SmartIO
- Typical deployment scenarios
- About cache area
- Configuring SmartIO
- Frequently asked questions about SmartIO
- Dynamic Multi-Pathing
- Configuring Cluster Volume Manager (CVM)
- Configuring a CVM cluster
- Administering CVM
- Access modes for cluster-shared volumes
- Storage disconnectivity and CVM disk detach policy
- Unconfiguring a CVM cluster
- Command shipping
- About I/O Fencing
- Administering site-aware allocation for campus clusters
- SFW for Hyper-V virtual machines
- Introduction to Storage Foundation solutions for Hyper-V environments
- Live migration support for SFW dynamic disk group
- Preparing the host machines
- Configuring the SFW storage
- Administering storage migration for SFW and Hyper-V virtual machine volumes
- Optional Storage Foundation features for Hyper-V environments
- Microsoft Failover Clustering support
- Configuring a quorum in a Microsoft Failover Cluster
- Implementing disaster recovery with Volume Replicator
- Volume encryption
- Secure file system (SecureFS) for protection against ransomware
- Troubleshooting and recovery
- Using disk and volume status information
- Resolving common problem situations
- Commands or procedures used in troubleshooting and recovery
- Rescan command
- Repair volume command for dynamic mirrored volumes
- Additional troubleshooting issues
- Disk issues
- Volume issues
- Disk group issues
- Connection issues
- Issues related to boot or restart
- Cluster issues
- Dynamic Multi-Pathing issues
- vxsnap issues
- Other issues
- CVM issues
- Appendix A. Command line interface
- Overview of the command line interface
- vxclustadm
- vxvol
- vxdg
- vxclus
- vxdisk
- vxassist
- vxassist (Windows-specific)
- vxsd
- vxedit
- vxdmpadm
- vxcbr
- vxsnap
- vxscrub
- vxschadm
- sfcache
- Tuning SFW
- Appendix B. VDID details for arrays
- Appendix C. Executive Order logging
Hot relocation overview
In hot relocation mode, if there are I/O errors on a subdisk containing a redundant volume (RAID-5 or mirrored), the redundant volume's subdisks are moved from the failed subdisk to a hot spare disk. If there is not enough free space on designated hot spare disks, then free space on any available disk is used. Depending on available disk space, the subdisks is not always moved to the same disk, but may be scattered within the dynamic disk group. The Undo Hot Relocation command can be used to move the subdisks back to their original location after the failed disk has been repaired or replaced.
Note:
The hot relocation operation is performed only for redundant subdisks with I/O errors if there are healthy plexes of the volume available elsewhere within the dynamic disk group. Nonredundant subdisks with I/O errors are not relocated; the volume fails, and an alert message is sent to the Event Log.
When selecting space for relocation, hot relocation preserves the redundancy characteristics of the dynamic volume that the relocated subdisk belongs to. For example, hot relocation ensures that a failed subdisk is not relocated to a disk containing its mirror. If redundancy cannot be preserved by using any available spare disks or free space, hot relocation does not take place. If relocation is not possible, the system administrator is notified and no further action is taken.
Note:
The hot relocation operation does not adhere to site boundary restrictions. If hot relocation causes the site boundary to be crossed, then the Site Separated property of the volumes is changed to Siteless. This is done so as not to disable hot relocation. To restore site boundaries later, you can relocate the data that crossed the site boundary back to a disk on the original site and then change back the properties of the affected volumes.
See Administering disks for site-based allocation.
When hot relocation takes place, the failed subdisk is removed from the configuration database, and Storage Foundation for Windows takes precautions to ensure that the disk space used by the failed subdisk is not recycled as free space.
The default is to have all disks available as targets for hot-relocated subdisks. Using the Set Disk Usage command, you can choose to designate specific disks as not available.
Note:
The Reset button restores default settings.
More Information