Volume Replicator 7.4.1 Administrator's Guide - Windows
- Understanding Volume Replicator
- About Volume Replicator
- Basic Volume Replicator terms
- Building blocks of Volume Replicator
- Understanding replication in the Volume Replicator environment
- Modes of replication
- Understanding data flow in Volume Replicator asynchronous mode
- Managing data during failure and recovery
- Replication concepts
- About using Volume Replicator as a disaster recovery tool
- Understanding how Volume Replicator logs writes to the Replicator Log
- Understanding replication settings for a Secondary
- Measures to protect log overflow and replication latency
- Pausing the replication
- Synchronizing the Secondary
- Understanding Volume Replicator support for FlashSnap
- About Synchronized Snapshots
- Understanding Bunker replication
- Understanding Volume Replicator Support for TCP Multi-Connection
- About Volume Replicator memory monitoring and control support
- About Volume Replicator Graphs
- Setting up replication
- Security considerations for Volume Replicator
- Setting up replication using the Setup Replicated Data Set wizard
- Setting up the Bunker RVG for replication
- Using the VEA Console for Volume Replication Operations
- Monitoring replication
- Interpreting the information in the Volume Replicator views
- Monitoring replication using the VEA console
- Checking replication performance using vxrlink stats
- Administering Volume Replicator
- Adding volumes
- Administering the RVG
- Administering replication
- Managing checkpoints
- Pausing replication using Volume Replicator
- Creating snapshots for the data volumes
- Creating synchronized snapshots using the VSS Snapshot wizard
- Administering Bunker replication
- Performing disaster recovery operation
- Deleting Volume Replicator objects
- Accessing data on Secondary host
- Performing automated system recovery (ASR)
- Alternative methods to synchronize the Secondary faster
- Obtaining statistical information through Volume Replicator Graphs
- Using the command line interface
- Administering the RDS using the vxrds command
- Resizing the data volumes
- Displaying the network statistics for the RLINK
- Administering the RVGs using the vxrvg command
- Displaying information using the vxprint command
- Creating snapshots using the vxsnap command
- Administering replicated volumes using the vxvol command
- Displaying and changing replication ports using the vrport command
- Administering the RVG using the vxedit
- Administering the RVG using the vxassist command
- Tuning Volume Replicator
- Examples: Using the command line
- Example 1: Setting up replication using the command line interface
- Example 3: Using Bunker node for disaster recovery
- Example 4: Using synchronized snapshots to restore data
- Configuring Volume Replicator in a VCS environment
- Components of a VCS cluster
- Illustrating a highly available Volume Replicator setup
- How the agents work
- Configuring the agents
- Working with existing replication service groups
- Configuring Volume Replicator with Hyper-V
- Advanced settings in Volume Replicator
- Troubleshooting Volume Replicator
- Recommendations and checks
- Recovering from problems in a firewall or NAT setup
- Recovering from problems during replication
- Error when configuring the VxSAS Service
- Operation time-out errors
- Problems when configuring Volume Replicator in a VCS environment
- Problems when setting performance counters
- Appendix A. Services and ports
- Appendix B. Using the vxrsync utility
- Appendix C. VR Advisor (VRAdvisor)
Overview
When the SRL overflows for a particular Secondary, the RLINK corresponding to that Secondary is marked STALE and becomes out of date until a complete resynchronization with the Primary is performed. Because resynchronization is a time-consuming process and during this time the data on the Secondary cannot be used, it is important to avoid SRL overflows. The SRL size needs to be large enough to satisfy four constraints:
It must not overflow for asynchronous RLINKs during periods of peak usage when replication over the RLINK may fall far behind the application.
It must not overflow while a Secondary RVG is synchronized.
It must not overflow while a Secondary RVG is restored.
It must not overflow during extended outages (network or Secondary node).
Note:
The size of SRL must be at least 110 MB. If size specified for SRL is less than 110 MB, Volume Replicator displays an error message that prompts to specify a value that is equal to or greater than 110 MB.
To determine a size of the SRL, you must determine the size that is required to satisfy each of these constraints individually. Choose a value at least equal to the maximum so that all constraints are satisfied. To perform this analysis, you need the following information:
The maximum expected downtime for Secondary nodes
The maximum expected downtime for a network connection
The method for synchronizing Secondary data volumes with data from Primary data volumes. If the application is shutdown to perform the synchronization, the SRL is not used and the method is not important. Otherwise, this information can include the time that is required to copy data over the network or to copy it to a tape or disk, to send the copy to the Secondary site, and to load the data onto the Secondary data volumes.
Note:
If Automatic Synchronization option is used to synchronize the Secondary, the above-mentioned step is not a concern.
To perform Secondary backups to avoid complete resynchronization in case of Secondary data volume failure, the following information is required:
The frequency of Secondary backups
The maximum expected delay to detect and repair a failed Secondary data volume
The expected time to reload backups onto the repaired Secondary data volume